吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (04): 1098-1103.doi: 10.7964/jdxbgxb201304040

• 论文 • 上一篇    下一篇

基于目标对象的最佳中继协作频谱感知方案

李美玲1,2, 袁超伟2, 赵伟2, 韩曦2   

  1. 1. 太原科技大学 电子信息工程学院,太原 030024;
    2. 北京邮电大学 信息与通信工程学院,北京 100876
  • 收稿日期:2012-04-02 出版日期:2013-07-01 发布日期:2013-07-01
  • 作者简介:李美玲(1982-),女,博士研究生,讲师.研究方向:未来移动通信关键技术.E-mail:meiling_li@126.com
  • 基金资助:

    国家自然科学基金项目(60872149,60672132,61272262,61073142,41140026);山西省自然科学基金项目(2011011014-1);太原科技大学博士科研项目(20122032).

Target based cooperative spectrum sensing scheme with best relay

LI Mei-ling1,2, YUAN Chao-wei2, ZHAO Wei2, HAN Xi2   

  1. 1. School of Electronics and Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China;
    2. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2012-04-02 Online:2013-07-01 Published:2013-07-01

摘要:

提出了一种基于目标对象的最佳中继协作频谱感知方案(Pe-BRCS),通过最小化报告信道上的错误传输概率为目标选择最佳中继,以提高感知性能;为了降低计算复杂度,进一步提出了简化的最佳中继,协作频谱感知方案(simplified_BRCS)。仿真结果表明:相比传统SINR-BRCS方案,Pe_BRCS方案有效降低了报告信道上的错误传输概率,可以在增加较少计算复杂度的条件下提高感知性能;simplified_BRCS方案可以在不增加复杂度的情况下很好地近似Pe_BRCS方案。

关键词: 通信技术, 认知无线电, 协作频谱感知, 中继协作, 报告错误概率

Abstract:

Target based Cooperative Spectrum Sensing (CSS) scheme with best relay (Pe-BRCS) was proposed. In this scheme the best relay was selected by minimizing the reporting error probability to improve the sensing performance. Furthermore, to reduce the computational complexity, a simplified CSS scheme with best relay (simplified-BRCS) was proposed. Results of numerical simulation show that, comparing with traditional SINR-BRCS, the reduced reporting error probability can be achieved effectively by the proposed Pe-BRCS with little computational complexity. The performance obtained by the simplified-BRCS scheme is similar to that of Pe-BRCS but without increase in computational complexity.

Key words: communication, cognitive radio, cooperative spectrum sensing, relay cooperation, reporting error probability

中图分类号: 

  • TN911

[1] Akyildiz I, Lee W, Vuran M, et al. Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey[J]. Computer Networks Journal, 2006, 50(13):2127-2159.

[2] Amir G, Elvino S S. Opportunistic spectrum access in fading channels through collaborative sensing[J]. Journal of Communications, 2007, 2(2): 71-82.

[3] Letaief K B, Zhang W. Cooperative communications for cognitive radio networks[J]. Proceedings of the IEEE, 2009, 97(5): 878-893.

[4] 李美玲,袁超伟,李琳,等. 使次系统容量最大化的协作频谱感知性能分析及优化[J]. 通信学报, 2011, 32(2): 53-60. Li Mei-ling, Yuan Chao-wei, Li Lin, et al. Performance analysis and optimization of cooperative spectrum sensing for maximizing secondary throughput[J]. Journal on Communications, 2011, 32(2): 53-60.

[5] Li M L, Yuan C W, Li L, et al. Analysis of secondary throughput and optimization in cooperative spectrum sensing[J]. Journal of China Universities of Posts and Telecommunications, 2011, 18 (4): 39-44.

[6] Ganesan G, Li Y. Cooperative spectrum sensing in cognitive radio, part I: two user networks[J]. IEEE Transactions on Wireless Communications, 2007, 6(6): 2204-2212.

[7] Zhang Q, Jia J C, Zhang J. Cooperative relay to improve diversity in cognitive radio networks[J]. IEEE Communications Magazine, 2009, 47(2): 111-117.

[8] Zou Y L, Yao Y D, Zheng B Y. Outage probability analysis of cognitive transmissions: the impact of spectrum sensing overhead[J]. IEEE Transactions on Wireless Communications, 2010, 9(8): 2676-2688.

[9] Zou Y L, Yao Y D, Zheng B Y. Cognitive transmissions with multiple relays in cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2011, 10(2): 648-659.

[10] Zou Y L, Yao Y D, Zheng B Y. A cooperative sensing based cognitive relay transmission scheme without a dedicated sensing relay channel in cognitive radio networks[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 854-858.

[11] Beres E, Adve R S. Selection cooperation in multi-source co-operative networks[J]. IEEE Transactions on Wireless Communications, 2008,7(1): 118-127.

[12] Al-Hussaini E, Al-Bassiouni A. Performance of MRC diversity systems for the detection of signals in Nakagami fading[J]. IEEE Transactions on Communications,1985, 33(12):1315-1319.

[13] Zhao Y, Adve R, Lim T J. Outage probability at arbitrary SNR with cooperative diversity[J]. IEEE Communications Letters, 2005, 9(8):700-702.

[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[10] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[11] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[12] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[13] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[14] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
[15] 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!