吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (1): 236-244.doi: 10.13229/j.cnki.jdxbgxb201501035
王俊华1,2,3,左万利1,2,彭涛1,2
WANG Jun-hua1,2,3,ZUO Wan-li1,2,PENG Tao1,2
摘要: 借助文本预处理工具Gate和通用本体WordNet,采用统计、频繁项挖掘、模式匹配、启发式学习和主动学习等技术,学习本体基元——概念(含实例)、概念间的分类关系、概念间的语义关系和概念属性,其中概念属性学习为本文首次提出。实验结果表明,本文方法改善了概念语义排歧效果,丰富了短语概念学习与语义关系学习,提高了本体自动构建的准确度,降低了本体学习的代价。
中图分类号:
[1] 叶育鑫, 欧阳丹彤, 领吉, 等. 本体与规则整合的推理方法研究及设计[J]. 吉林大学学报:工学版,2009, 39(5): 1297-1302. Ye Yu-xin, Ouyang Dan-tong, Ling Ji, et al. Research and design of reasoning algorithm with ontologies and rules[J]. Journal of Jilin University (Engineering and Technology Edition),2009, 39(5): 1297-1302. [2] 白岩, 刘大有, 刘杰. 一种移动Agent通信中本体信息调整方法[J]. 吉林大学学报:工学版,2007, 37(3):587-590. Bai Yan, Liu Da-you, Liu Jie. Ontology based information alignment method in mobile Agent communication[J]. Journal of Jilin University (Engineering and Technology Edition),2007, 37(3): 587-590. [3] Philipp Cimiano, Johanna Volker. Text2Onto a framework for ontology learning and data-driven change discovery[C]∥LNCS,2005,3513: 227-238. [4] Shamsfard M, Barforoush A A. Learning ontologies from natural language texts[J]. Journal of Human-Computer Studies, 2004, 60(1): 17-63. [5] Navigli R, Velardi P, Gangemi A. Ontology learning and its application to automated terminology translation[J]. IEEE Intelligent Systems, 2003,18(1):22-31. [6] Avigdor G, Giovanni M, Hasan J. OntoBuilder: fully automatic extraction and consolidation of ontologies from web sources[C]∥Proc of the ICDE, Boston: IEEE Computer Society, 2004: 853-858. [7] Fortuna Blaz, Grobelnik Marko, Mladenic Dunja. OntoGen: semi-automatic ontology editor[C]∥HCII, 2007: 309-318. [8] 邢军,韩敏. 基于两层向量空间模型和模糊FCA本体学习方法[J]. 计算机研究与发展, 2009, 46(3): 443-451. Xing Jun, Han Min. An ontology learning method based on double VSM and fuzzy FCA[J]. Journal of Computer Research and Development, 2009, 46(3): 443-451. [9] Zouaq Amal,Gasevic Dragan,Hatala Marek. Towards open ontology learning and filtering[J]. Information Systems, 2011, 36(7): 1064-1081. [10] Ruiz-Martinez J M, Valencia-Garcia R, Fernandez-Breis J T, et al. Ontology learning from biomedical natural language documents using UMLS[J]. Expert Systems with Applications, 2011, 38(10): 12365-12378. [11] Yang Qing, Cai Kai-min, Sun Jun-li, et al. Design analysis and implementation for ontology learning model[C]∥ICCET, 2010:164-167. [12] Jiang Xing, Tan Ah-hwee. CRCTOL: a semantic-based domain ontology learning system[C]∥ICCET, 2010:3164-3167. [13] Navigli R, Velardi P. Structural semantic interconnections: acknowledge-based approach to word sense disambiguation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(7):1075-1086. [14] Patwardhan S, Banerjee S, Pedersen T. UMND1: unsupervised word sense disambiguation using contextual semantic relatedness[C]∥The 4th International Workshop on Semantic Evaluations, 2007: 390-393. [15] Pedersen T, Kolhatkar V. WordNet: SenseRelate: AllWords -a broad coverage word sense tagger that maximizes semantic relatedness[C]∥NAACL HLT, 2009: 17-20. [16] McCarthy Diana, Koeling Rob, Weeds Julie, et al. Unsupervised acquisition of predominant word senses[J]. Computational Linguistics, 2007, 33(4): 553-590. [17] Eneko Agirre, Oier Lopez de Lacalle, Aitor Soroa. Knowledge-based WSD on specific domains: performing better than generic supervised WSD[C]∥The Twenty-First International Joint Conference on Artificial Intelligence, 2009: 1501-1506. [18] Lu Zhi-mao, Liu Ting, Zhang Gang, et al. Word sense disambiguation based on dependency relationship analysis and Bayes model[J]. High Technology Letters, 2003, 13(5): 1-7. [19] Chen P, Ding W, Bowes C, et al. A fully unsupervised word sense disambiguation method using dependency knowledge human language technologies[C]∥The Annual Conference of the North American Chapter of the ACL, 2009: 28-36. [20] Lu Wen-peng, Huang He-yan, Zhu Chao-yong. Feature words selection for knowledge-based word sense disambiguation with syntactic parsing[J]. Przeglad Elektrotechniczny, 2012, 88: 82-87. [21] Huang He-yan, Lu Wen-peng. Knowledge-based word sense disambiguation with feature words based on dependency relation and syntax tree[J]. IJACT, 2011, 3(8): 73-81. [22] Leacock Claudia, Chodorow Martin. Combining local context and WordNet similarity for word sense identification[C]∥Fellbaum, 1998:265-283. |
[1] | 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577. |
[2] | 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585. |
[3] | 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205. |
[4] | 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213. |
[5] | 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865. |
[6] | 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873. |
[7] | 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881. |
[8] | 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532. |
[9] | 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538. |
[10] | 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544. |
[11] | 曲慧雁, 赵伟, 秦爱红. 基于优化算子的快速碰撞检测算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603. |
[12] | 李嘉菲, 孙小玉. 基于谱分解的不确定数据聚类方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611. |
[13] | 邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋. 无平衡点分数阶混沌系统全状态自适应控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230. |
[14] | 王生生, 王创峰, 谷方明. OPRA方向关系网络的时空推理[J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243. |
[15] | 马淼, 李贻斌. 基于多级图像序列和卷积神经网络的人体行为识别[J]. 吉林大学学报(工学版), 2017, 47(4): 1244-1252. |
|