吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (1): 236-244.doi: 10.13229/j.cnki.jdxbgxb201501035

• 论文 • 上一篇    下一篇

面向文本的本体学习方法

王俊华1,2,3,左万利1,2,彭涛1,2   

  1. 1.吉林大学 计算机科学与技术学院,长春 130012;
    2.吉林大学 符号计算与知识工程教育部重点实验室,长春 130012;
    3.长春工业大学 计算机科学与工程学院,长春 130012
  • 收稿日期:2013-09-02 出版日期:2015-02-01 发布日期:2015-02-01
  • 通讯作者: 左万利(1957),男,教授,博士.研究方向:本体工程,Web数据挖掘.E-mail:wanli@jlu.edu.cn
  • 作者简介:王俊华(1982),女,博士研究生.研究方向:本体工程和自然语言处理.E-mail:wangjh10@mails.jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(60973040);国家自然科学青年基金项目(60903098,61300148);吉林省重点科技攻关项目(20130206051GX);吉林省科技计划青年科研基金项目(20130522112JH).

Test-oriented ontology learning methods

WANG Jun-hua1,2,3,ZUO Wan-li1,2,PENG Tao1,2   

  1. 1.College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    2.Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education,Changchun 130012,China;
    3.College of Computer Science and Engineering,Changchun University of Technology,Changchun 130012,China
  • Received:2013-09-02 Online:2015-02-01 Published:2015-02-01

摘要: 借助文本预处理工具Gate和通用本体WordNet,采用统计、频繁项挖掘、模式匹配、启发式学习和主动学习等技术,学习本体基元——概念(含实例)、概念间的分类关系、概念间的语义关系和概念属性,其中概念属性学习为本文首次提出。实验结果表明,本文方法改善了概念语义排歧效果,丰富了短语概念学习与语义关系学习,提高了本体自动构建的准确度,降低了本体学习的代价。

关键词: 人工智能, 本体学习, 主动学习, 模式匹配, 频繁项挖掘, 启发式学习

Abstract: The techniques of statistics, frequent item mining, pattern matching, heuristic learning and active learning are employed to learn the concepts (including instances), taxonomic relations, semantic relations and the concept properties from the documents based on preprocessing tool Gate and general ontology WordNet. The concept property learning was first proposed in this paper. Experiment results show that the proposed ontology learning method can improve the effect of word semantic disambiguation, enrich phrase concept learning and semantic relationship learning, increase the accuracy of automatic ontology construction and reduce the cost of ontology learning.

Key words: artificial intelligence, ontology learning, active learning, pattern matching, frequent item mining, heuristic learning

中图分类号: 

  • TP18
[1] 叶育鑫, 欧阳丹彤, 领吉, 等. 本体与规则整合的推理方法研究及设计[J]. 吉林大学学报:工学版,2009, 39(5): 1297-1302.
Ye Yu-xin, Ouyang Dan-tong, Ling Ji, et al. Research and design of reasoning algorithm with ontologies and rules[J]. Journal of Jilin University (Engineering and Technology Edition),2009, 39(5): 1297-1302.
[2] 白岩, 刘大有, 刘杰. 一种移动Agent通信中本体信息调整方法[J]. 吉林大学学报:工学版,2007, 37(3):587-590.
Bai Yan, Liu Da-you, Liu Jie. Ontology based information alignment method in mobile Agent communication[J]. Journal of Jilin University (Engineering and Technology Edition),2007, 37(3): 587-590.
[3] Philipp Cimiano, Johanna Volker. Text2Onto a framework for ontology learning and data-driven change discovery[C]∥LNCS,2005,3513: 227-238.
[4] Shamsfard M, Barforoush A A. Learning ontologies from natural language texts[J]. Journal of Human-Computer Studies, 2004, 60(1): 17-63.
[5] Navigli R, Velardi P, Gangemi A. Ontology learning and its application to automated terminology translation[J]. IEEE Intelligent Systems, 2003,18(1):22-31.
[6] Avigdor G, Giovanni M, Hasan J. OntoBuilder: fully automatic extraction and consolidation of ontologies from web sources[C]∥Proc of the ICDE, Boston: IEEE Computer Society, 2004: 853-858.
[7] Fortuna Blaz, Grobelnik Marko, Mladenic Dunja. OntoGen: semi-automatic ontology editor[C]∥HCII, 2007: 309-318.
[8] 邢军,韩敏. 基于两层向量空间模型和模糊FCA本体学习方法[J]. 计算机研究与发展, 2009, 46(3): 443-451.
Xing Jun, Han Min. An ontology learning method based on double VSM and fuzzy FCA[J]. Journal of Computer Research and Development, 2009, 46(3): 443-451.
[9] Zouaq Amal,Gasevic Dragan,Hatala Marek. Towards open ontology learning and filtering[J]. Information Systems, 2011, 36(7): 1064-1081.
[10] Ruiz-Martinez J M, Valencia-Garcia R, Fernandez-Breis J T, et al. Ontology learning from biomedical natural language documents using UMLS[J]. Expert Systems with Applications, 2011, 38(10): 12365-12378.
[11] Yang Qing, Cai Kai-min, Sun Jun-li, et al. Design analysis and implementation for ontology learning model[C]∥ICCET, 2010:164-167.
[12] Jiang Xing, Tan Ah-hwee. CRCTOL: a semantic-based domain ontology learning system[C]∥ICCET, 2010:3164-3167.
[13] Navigli R, Velardi P. Structural semantic interconnections: acknowledge-based approach to word sense disambiguation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(7):1075-1086.
[14] Patwardhan S, Banerjee S, Pedersen T. UMND1: unsupervised word sense disambiguation using contextual semantic relatedness[C]∥The 4th International Workshop on Semantic Evaluations, 2007: 390-393.
[15] Pedersen T, Kolhatkar V. WordNet: SenseRelate: AllWords -a broad coverage word sense tagger that maximizes semantic relatedness[C]∥NAACL HLT, 2009: 17-20.
[16] McCarthy Diana, Koeling Rob, Weeds Julie, et al. Unsupervised acquisition of predominant word senses[J]. Computational Linguistics, 2007, 33(4): 553-590.
[17] Eneko Agirre, Oier Lopez de Lacalle, Aitor Soroa. Knowledge-based WSD on specific domains: performing better than generic supervised WSD[C]∥The Twenty-First International Joint Conference on Artificial Intelligence, 2009: 1501-1506.
[18] Lu Zhi-mao, Liu Ting, Zhang Gang, et al. Word sense disambiguation based on dependency relationship analysis and Bayes model[J]. High Technology Letters, 2003, 13(5): 1-7.
[19] Chen P, Ding W, Bowes C, et al. A fully unsupervised word sense disambiguation method using dependency knowledge human language technologies[C]∥The Annual Conference of the North American Chapter of the ACL, 2009: 28-36.
[20] Lu Wen-peng, Huang He-yan, Zhu Chao-yong. Feature words selection for knowledge-based word sense disambiguation with syntactic parsing[J]. Przeglad Elektrotechniczny, 2012, 88: 82-87.
[21] Huang He-yan, Lu Wen-peng. Knowledge-based word sense disambiguation with feature words based on dependency relation and syntax tree[J]. IJACT, 2011, 3(8): 73-81.
[22] Leacock Claudia, Chodorow Martin. Combining local context and WordNet similarity for word sense identification[C]∥Fellbaum, 1998:265-283.
[1] 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577.
[2] 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585.
[3] 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[4] 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[5] 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[6] 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[7] 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[8] 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[9] 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[10] 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[11] 曲慧雁, 赵伟, 秦爱红. 基于优化算子的快速碰撞检测算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
[12] 李嘉菲, 孙小玉. 基于谱分解的不确定数据聚类方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
[13] 邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋. 无平衡点分数阶混沌系统全状态自适应控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[14] 王生生, 王创峰, 谷方明. OPRA方向关系网络的时空推理[J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243.
[15] 马淼, 李贻斌. 基于多级图像序列和卷积神经网络的人体行为识别[J]. 吉林大学学报(工学版), 2017, 47(4): 1244-1252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!