吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (5): 1658-1664.doi: 10.13229/j.cnki.jdxbgxb201505040

• • 上一篇    下一篇

部分信道状态信息下抗窃听协作中继传输方案

雷维嘉, 左莉杰, 谢显中   

  1. 重庆邮电大学 移动通信技术重庆市重点实验室, 重庆 400065
  • 收稿日期:2014-03-12 出版日期:2015-09-01 发布日期:2015-09-01
  • 作者简介:雷维嘉(1969-),男,教授,博士.研究方向:无线和移动通信技术.E-mail:leiwj@cqupt.edu.cn
  • 基金资助:
    国家自然科学基金项目(61471076, 61271259, 61301123); 长江学者和创新团队发展计划项目(IRT1299); 重庆市科委重点实验室专项项目

Eavesdropping-resistant cooperative relay transmission scheme with partial channel state information

LEI Wei-jia, ZUO Li-jie, XIE Xian-zhong   

  1. Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and elecommunications, Chongqing 400065, China
  • Received:2014-03-12 Online:2015-09-01 Published:2015-09-01

摘要: 给出一种在缺少窃听节点信道信息、存在直接链路的情况下基于放大转发的中继波束赋形加人工噪声的传输方案。基于凸优化理论,对中继的波束赋形权值进行了优化,优化结果是唯一的和全局性的。仿真结果表明:利用此方案能够有效地防止窃听节点窃听,减少信息泄露,从而提高安全传输速率。

关键词: 通信技术, 物理层安全, 中继波束赋形, 协作干扰, 抗窃听, 人工噪声

Abstract: An Amplify-and-Forward (AF) relay beam-forming and cooperation jamming scheme is proposed in the circumstances that the eavesdropper's channel state information cannot be obtained and the direct link is present. The beam-forming weights of relays are optimized using convex optimization theory, and the results of the optimization are global and unique. Simulation results show that the proposed scheme can effectively prevent eavesdropping, reduce information leakage, and consequently enhance secure transmission rate.

Key words: communication technology, physical layer security, relay beam-forming, cooperation jamming, eavesdropping-resistant, artificial noise

中图分类号: 

  • TN925
[1] Shannon C E. Communication theory of secrecy systems[J]. Bell System Technical Journal, 1949, 28: 656-715.
[2] Leung-Yan-Cheong S K, Hellman M E. The Gaussian wiretap channel[J]. IEEE Transactions on Information Theory, 1978, 24: 451-456.
[3] Csiszár I, Körner J. Broadcast channels with confidential messages[J]. IEEE Transactions on Information Theory, 1978, 24: 339-348.
[4] Chiurtu N, Rimoldi B, Telatar I E. On the capacity of multi-antenna Gaussian channels[C]∥IEEE International Symposium on Information Theory,Washington,2001.
[5] Sendonaris A, Erkip E, Aazhang B. User cooperation diversity part I: system description and part II: implementation aspects and performance analysis[J]. IEEE Transactions on Communication, 2003, 51(11): 1927-1948.
[6] Laneman J N, Tse D N C, Wornell G W. Cooperative diversity in wireless networks: efficient protocols and outage behavior[J]. IEEE Transactions on Information Theory, 2004, 50(12): 3062-3080.
[7] Praveen K G, Lai L F, Gamal E L H. On the secrecy capacity of fading channels[J]. IEEE Transactions on Information Theory, 2008, 54(10): 4687-4698.
[8] Li J Y, Petropulu A P, Weber S. On cooperative relaying schemes for wireless physical layer security[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4985-4997.
[9] Lun D, Zhu H, Petropulu A P, et al. Improving wireless physical layer security via cooperating relays[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1875-1888.
[10] Ye Y, Li Q, Wing-Kin M, et al. Cooperative secure beamforming for AF relay networks with multiple eavesdroppers[J]. IEEE Signal Processing Letters, 2013, 20(1): 35-38.
[11] Zhang J W, Gursoy M C. Collaborative relay beamforming for secrecy[C]∥Preceding of IEEE International Conference on Communications, 2010.
[12] Huang J, Swindlehurst A L. Cooperative jamming for secure communications in MIMO relay networks[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4871-4884.
[13] Wang H M, Yin Q Y, Xia X G. Distributed beamforming for physical-layer security of two-way relay networks[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3532-3545.
[14] Liang Y B, Gerhard K, Vincent H, et al. Compound wiretap channels[J]. EURASIP Journal on Wireless Communications and Networking, 2007.
[15] Boyd S, Vandenberghe L. Convex Optimization[M]. Cambridge, UK: Cambridge University Press, 2004.
[16] Sturm J F. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones[J]. Optimization Methods and Software, 1999, 11(1-4): 625-653.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[10] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[11] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[12] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[13] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[14] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
[15] 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!