吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (1): 97-104.doi: 10.13229/j.cnki.jdxbgxb201701015

• 论文 • 上一篇    下一篇

基于L-M算法的正交Stewart平台位姿正解的初值补偿

王启明, 苏建, 张兰, 陈秋雨, 徐观   

  1. 吉林大学 交通学院,长春 130022
  • 收稿日期:2015-11-18 出版日期:2017-01-20 发布日期:2017-01-20
  • 通讯作者: 苏建(1954-),男,教授,博士生导师.研究方向:车辆智能检测.E-mail:sujianjd@163.com
  • 作者简介:王启明(1991-),女,博士研究生.研究方向:车辆智能检测.E-mail:wang.qiming2008@163.com
  • 基金资助:
    国家自然科学基金项目(51478204).

Forward kinematics of orthogonal Stewart platform based on L-M algorithm

WANG Qi-ming, SU Jian, ZHANG Lan, CHEN Qiu-yu, XU Guan   

  1. College of Transportation, Jilin University, Changchun 130022, China
  • Received:2015-11-18 Online:2017-01-20 Published:2017-01-20

摘要: 针对牛顿拉夫逊迭代法求解正交Stewart六自由度平台位姿正解对迭代初值依赖的问题,提出基于Levenberg-Marquardt(L-M)算法改进的BP神经网络模型,进而实现对Stewart平台位姿正解的迭代初值补偿值计算,并与基于BFGS拟牛顿算法、SCG量化共轭梯度算法、GDA梯度下降自适应算法所建立的BP神经网络模型进行对比分析,重点分析模型的适应性、预测输出、误差性能等。结果表明:采用提出的基于L-M算法改进的BP神经网络模型对正交Stewart六自由度平台位姿正解的迭代初值校正后,收敛速度有显著提升,初始值校正误差低于0.1%,校正结果满足预期要求。

关键词: 铁路运输, 位姿正解, 轨道车辆, 位姿测量系统, Levenberg-Marquardt算法, 牛顿拉夫逊迭代法

Abstract: Aiming at the problem of high sensitivity to iteration initial guess when using Newton-Raphson iteration method to compute the forward kinematic solution of orthogonal Stewart-6D- platform, a compensation method based on Levenberg-Marquardt (L-M) algorithm of back propagation model iteration initial guess was proposed. The adaptation, the output prediction and error performance of the proposed algorithm were analyzed in comparison with the back propagation model based BFGS quasi-Newton algorithm, back propagation model based scale conjugate gradient, back propagation model based gradient descent with adaptive Ir algorithm. With the help of inverse solution model based Simulink and SolidWorks, successful training samples were established. 1000 groups of data were randomly and comprehensively picked up. 900 groups were used for training the net and the other 100 groups were used for testing whether the trained net is qualified. Simulation results show that the initial guess modified L-M algorithm of back propagation model was significantly calibrated. The convergent speed of the iteration modified algorithm was improved. The angle and displacement calibrating error rate was less than 0.1%. The test results of the improved BP Neural net can meet the requirement.

Key words: railway transportation, forward kinematics, railway vehicles, pose measurement system, Levenberg-Marquardt(L-M) algorithm, Newton-Raphson iteration

中图分类号: 

  • U266
[1] 程世利,吴洪涛,王超群,等. 基于正交补的6-3 Stewart并联机构运动学正解[J]. 中国机械工程,2011,22(5):505-508.
Cheng Shi-li, Wu Hong-tao, Wang Chao-qun, et al. Forward kinematics analysis of 6-3 Stewart parallel mechanisms based on orthogonal complement method[J]. Chinese Journal of Mechanical Engineering,2011, 22(5): 505-508.
[2] 李立,张剑,陈永,等. 同伦迭代法的研究及其应用于机构学问题的求解[J].西南交通大学学报:自然科学版,2000,35(1):57-60.
Li Li, Zhang Jian, Chen Yong, et al. On the homo-topy iteration method and its application in the mechanism problems[J]. Journal of Southwest Jiaotong University(Natural Science), 2000, 35(1): 57-60.
[3] Yu Y K. Kinematic geometry, dynamics and control of parallel manipulator[D]. Hong Kong: Hong Kong University of Science and Technology,2002:35-49.
[4] Gough V E, Whitehall S G. Universal Type Test Machine[C]∥Procedding of FISITA International Technical Congress, Bangkok,Thailand, 1962: 117-137.
[5] Nanua P, Waldron K J, Murthy V. Direct kinematic solution of a Stewart platform[J]. IEEE Transactions on Robotics and Automation, 1990, 6(4): 438-444.
[6] 姜虹,贾嵘,董洪智,等. 六自由度并联机器人位置正解的数值解法[J].上海交通大学学报,2000, 34(3): 351-353.
Jiang Hong, Jia Rong, Dong Hong-zhi, et al. Positional solution of a six-degree of freedom parallel robot[J]. Journal of Shanghai Jiaotong University, 2000, 34(3):351-353.
[7] 车林仙,何兵,易建,等. 对称结构Stewart机构位置正解的改进粒子群算法[J]. 农业机械学报,2008,39(10):158-163.
Che Lin-xian, He Bing, Yi Jian, et al. Improved particle swarm optimization for forward positional analysis of symmetrical Stewart parallel manipulators[J]. Transactions of the Chinese Society for Agriculture, 2008, 39(10):158-163.
[8] Gallardo J, Lesso R, Rico J M, et al.The kinematics of modular spatial hyper-redundant manipulators formed from RPS-type limbs[J]. Robotics and Autonomous Systems, 2011, 58(1): 12-21.
[9] Tarokh M, Keerthik K, Lee M. Classification and characterization of inverse kinematics solutions for anthropomorphic manipulators[J]. Robotics and Autonomous Systems,2010,58(1): 115-120.
[10] 沈花玉,王兆霞,高成耀,等. BP神经网络隐含层单元数的确定[J]. 天津理工大学学报,2008,24(5):13-15.
Shen Hua-yu, Wang Zhao-Xia, Gao Cheng-yao, et al. Determining the number of BP neural network hidden layer units[J]. Journal of Tianjin University of Technology, 2008, 24(5):13-15.
[1] 尹紫红, 朱波, 邵国霞, 孔德惠, 蒋良潍. 铁路超重货物作用下的轨道路基响应[J]. 吉林大学学报(工学版), 2017, 47(5): 1446-1452.
[2] 左静, 帅斌, 黄文成. 改进距离熵权MULTIMOORA的铁路应急救援方案搜索[J]. 吉林大学学报(工学版), 2017, 47(4): 1068-1074.
[3] 牛治慧, 苏建, 张益瑞, 徐观, 谭富星. 基于转向架试验台的轨道不平顺模拟试验[J]. 吉林大学学报(工学版), 2017, 47(2): 400-407.
[4] 张益瑞, 苏建, 张兰, 谭富星, 徐观. 轨道车辆转向架一系悬挂刚度测定[J]. 吉林大学学报(工学版), 2016, 46(4): 1083-1089.
[5] 刘玉梅, 赵聪聪, 熊明烨, 郭文翠, 张志远. 基于物元模型的高速轨道车辆传动系可靠性评价[J]. 吉林大学学报(工学版), 2015, 45(4): 1063-1068.
[6] 石怀龙, 宋烨, 邬平波, 曾京, 朱海燕. 高速动车组转向架悬挂刚度特性[J]. 吉林大学学报(工学版), 2015, 45(3): 776-782.
[7] 王秀刚, 苏建, 曹晓宁, 徐振, 卢海隔, 田宗举. 基于旋转矩阵正交性的转向架6自由度平台位姿正解解算[J]. 吉林大学学报(工学版), 2013, 43(05): 1241-1246.
[8] 曹晓宁, 刘玉梅, 苏建, 王秀刚, 李卓. 转向架质心高度的测定[J]. 吉林大学学报(工学版), 2013, 43(02): 329-333.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!