吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 1321-1328.doi: 10.13229/j.cnki.jdxbgxb201704044

• 论文 • 上一篇    

生物友好的认知水声网络频谱分配

金志刚, 王健, 苏毅珊   

  1. 天津大学 电子信息工程学院,天津 300072
  • 收稿日期:2016-05-02 出版日期:2017-07-20 发布日期:2017-07-20
  • 作者简介:金志刚(1972-),男,教授,博士生导师.研究方向:传感器网络,水下网络,网络安全.E-mail:zgjin@tju.edu.cn
  • 基金资助:

    国家自然科学基金项目(61571318); 青海省科技计划项目(2015-ZJ-904); 海南省科技计划项目(ZDYF2016153).

Marine mammal-friendly spectrum allocation algorithm for cognitive underwater acoustic network

JIN Zhi-gang, WANG Jian, SU Yi-shan   

  1. School of Electronic and Information Engineering, Tianjin University, Tianjin 300072, China
  • Received:2016-05-02 Online:2017-07-20 Published:2017-07-20

摘要:

为充分利用海洋哺乳动物和水声传感器网络(UASNs)共享的稀缺频谱资源,提出了一种生物友好的认知水声网络频谱分配(MMF-CASA)方法。将海洋哺乳动物作为主用户,传感器节点作为次级用户,设计了生物友好的认知水声网络通信机制。以次级用户系统容量最大化为目标建立效用函数,通过拉格朗日乘数法和功率控制与信道分配技术求解次级用户的发送功率与信道分配,设计了生物友好的水声网络频谱分配机制和算法。实现了主用户和次级用户信道共享,最大化了水下稀缺的频谱资源的利用率。仿真结果表明,采用生物友好的认知水声网络频谱分配方法能够避免传感器节点通信对海洋哺乳动物间通信的干扰,使网络的频带利用率和系统容量分别提高了37.4%和34.2%。

关键词: 通信技术, 认知水声网络, 频谱分配, 生物友好, 功率控制

Abstract:

To make full use of the scare spectrum resources shared by marine mammals and underwater acoustic sensor networks,a new marine mammal-friendly spectrum allocation algorithm in cognitive acoustic networks is proposed. First,the marine mammals are considered as the primary user and the sensor node is used as the secondary user.Then,the communication mechanism of the mammal-friendly cognitive acoustic networks is proposed.The utility function is established with the goal of maximizing the system capacity of the secondary user.Third, the secondary user's transmission power and channel allocation are solved by the Lagrange multiplier method combined with power control and channel allocation technique. Finally,the marine mammal-friendly cognitive acoustic network spectrum allocation mechanism and algorithm are designed,which can achieve the channel sharing of the primary user and the secondary user,as well as maximizing the spectrum efficiency.Simulation results show that the marine mammal-friendly cognitive acoustic spectrum allocation algorithm not only can avoid interference between the sensor nodes and the marine mammals, but also the bandwidth efficiency and system capacity are improved by 37.4% and 34.3% respectively.

Key words: communication technology, cognitive underwater acoustic networks, spectrum allocation, marine mammal-friendly, power control

中图分类号: 

  • TN929.5
[1] Heidemann J, Stojanovic M, Zorzi M. Underwater sensor networks: applications, advances and challenges[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2012, 370(1958): 158-175.
[2] Jindal H, Saxena S, Singh S. Challenges and issues in underwater acoustics sensor networks: a review[C]//IEEE International Conference on Parallel, Distributed and Grid Computing (PDGC),Solan, 2014: 251-255.
[3] Han G,Jiang J,Sun N,et al.Secure communication for underwater acoustic sensor networks[J].IEEE Communications Magazine,2015,53(8):54-60.
[4] Bicen A O, Sahin A B, Akan O B. Spectrum-aware underwater networks: cognitive acoustic communications[J]. IEEE Vehicular Technology Magazine, 2012, 7(2): 34-40.
[5] Luo Y, Pu L, Zuba M, et al. Challenges and opportunities of underwater cognitive acoustic networks[J]. IEEE Transactions on Emerging Topics in Computing, 2014, 2(2): 198-211.
[6] 刘凇佐,刘冰洁,尹艳玲,等. M元仿海豚叫声隐蔽水声通信[J]. 哈尔滨工程大学学报,2014,35(1): 119-125.
Liu Song-zuo, Liu Bing-jie, Yin Yan-ling, et al. M-ray covert underwater acoustic communication by mimicking dolphin sounds[J]. Journal of Harbin Engineering University, 2014, 35(1): 119-125.
[7] Luo Y, Pu L, Zuba M, et al. Cognitive acoustics: making underwater communications environment-friendly[C]//Proceedings of the IEEE International Conference on Underwater Networks & Systems, New York, USA, 2014: 48.
[8] 张国胜,顾晓晓,邢彬彬,等. 海洋环境噪声的分类及其对海洋动物的影响[J]. 大连海洋大学学报,2012,27(1): 89-94.
Zhang Guo-sheng, Gu Xiao-xiao, Xing Bin-bin, et al. Classification of marine environmental noise and its effects on marine animals[J]. Journal of Dalian Ocean University, 2012, 27(1): 89-94.
[9] Tyack P L, Janik V M. Animal Communication and Noise[M]. Berlin: Springer, 2013: 251-271.
[10] Luo Y, Pu L, Zheng P, et al. RISM: an efficient spectrum management system for underwater cognitive acoustic networks[C]//IEEE Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Singapore, 2014: 414-422.
[11] Le A M,Kim D S.Joint channel and power allocation for underwater cognitive acoustic networks[C]//IEEE International Conference on Advanced Technologies for Communications(ATC),Hanoi,2014:745-749.
[12] Mitola J, Maguire J G Q. Cognitive radio: making software radios more personal[J]. IEEE Personal Communications, 1999, 6(4): 13-18.
[13] 李钊,饶正发,蔡沈锦. 协作认知无线网络中基于优先级队列的两级中心频谱共享[J]. 吉林大学学报:工学版,2016, 46(5):1651-1659.
Li Zhao, Rao Zheng-fa, Cai Shen-jin. Priority queue based two-layer centralized spectrum sharing in CCRN[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(5):1651-1659.
[14] Digham F F. Joint power and channel allocation for cognitive radios[C]//IEEE Wireless Communications and Networking Conference, Las Vegas, USA,2008: 882-887.
[15] Canales M, Gallego J R, Ciria R. Distributed channel allocation and power control in cognitive radio networks using game theory[C]//IEEE Vehicular Technology Conference (VTC Fall), San Francisco,USA,2011: 1-5.
[16] He Y Y, Dey S. Power allocation in spectrum sharing cognitive radio networks with quantized channel information[J]. IEEE Transactions on Communications, 2011, 59(6): 1644-1656.
[17] Baldo N, Casari P, Zorzi M. Cognitive spectrum access for underwater acoustic communications[C]//IEEE International Conference on Communications Workshops, Beijing, 2008: 518-523.
[18] Torees D, Charbiwala Z, Friedman J, et al. Spectrum signaling for cognitive underwater acoustic channel allocation[C]//IEEE Conference on Computer Communications Workshops, San Diego,USA,2010: 1-6.
[19] Yang Q, Su Y, Jin Z, et al. EFPC: an environmentally friendly power control scheme for underwater sensor networks[J]. Sensors, 2015, 15(11): 29107-29128.
[20] von Szalay P G,Brown E. Trawl comparisons of fishing power differences and their applicability to National Marine Fisheries Service and Alaska Department of Fish and Game trawl survey gear[J].Alaska Fishery Research Bulletin,2001,8(2):85-95.
[21] Bertsekas D. Nonlinear Programming[M]. Nashua,USA: Athena Scientific, 1999:309-312.
[22] Yao Gui-dan, Jin Zhi-gang, Su Yi-shan. An environment-friendly spectrum decision strategy for underwater wireless sensor networks[C]//IEEE International Conference on Communications (ICC), London, 2015: 6370-6375.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[10] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[11] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[12] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[13] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[14] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
[15] 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!