吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 1653-1660.doi: 10.13229/j.cnki.jdxbgxb201705043

• • 上一篇    下一篇

基于偏X型细胞自动机的图像加密方法

梁士利1, 柴宗谦1, 张玲2, 吴颜生1, 曹春雷1   

  1. 1.东北师范大学 物理学院,长春 130024;
    2.长春理工大学 理学院,长春 130024
  • 收稿日期:2016-10-22 出版日期:2017-09-20 发布日期:2017-09-20
  • 作者简介:梁士利(1968-),男,教授,博士.研究方向:信息安全.E-mail:lsl@nenu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61370228)

Image encryption method based on partial X type cellular automaton

LIANG Shi-li1, CHAI Zong-qian1, ZHANG Ling2, WU Yan-sheng1, CAO Chun-lei1   

  1. 1.College of Physics,Northeast Normal University,Changchun 130024,China;
    2.College of Science, Changchun University of Science and Technology,Changchun 130022,China
  • Received:2016-10-22 Online:2017-09-20 Published:2017-09-20

摘要: 提出了一种基于二维二态五邻居可逆细胞自动机(CA)的图像加密算法。本方法首先对X型结构类型的 CA进行了分析测试,提出了具有明显密钥混淆效应的偏X2型结构CA;其次在进行CA每次迭代加密时,对迭代结果进行矩阵转置运算处理;随后采用具有混沌行为的9d62(hex)规则一维四邻居CA产生密钥图像;最后算法在CA边界条件中插入密钥信息,并参与细胞自动机加密迭代。实验结果表明,采用基于偏X2型CA结构和新型密钥设计,相比于传统的密钥与尾数据做单一异或的运算方法,提高了密钥在整个加密体系的参与度和敏感性,降低了CA迭代次数,明文扩散率提高了36.14%。

关键词: 图像处理技术, X2型结构CA, 图像加密, 扩散率

Abstract: In this paper, an image encryption algorithm based on two-dimensional, two state and five neighbor reversible Cellular Automaton (CA) is proposed. First, this method is applied to analyze several X type neighbor structures of CA, and a partial X type structure of CA is put forwarded, which has obvious key confounding effect. Second, in each CA encryption iteration, the results are processed with matrix transpose operation; then the key image with one-dimensional four neighbor CA is generated, which has chaotic behavior at the rules of 9d62 (hex). Finally, the key information is put into the CA boundary conditions, so that the key is involved in each cellular automaton iteration. Experimental results show that using partial X2 type CA structure and new model of key design can improve the sensitivity of the key in the encryption system. Compared with traditional single XOR operation, the new method can also reduce the number of CA iterations, thus, possessing advantages in plaintext diffusion rate and obfuscation key, the diffusion rate is increased by 36.14%.

Key words: image processing technology, X2 structure CA, image encryption, diffusion rate

中图分类号: 

  • TP399
[1] Zhang Xing, Zhang Hong, Xu Chun-gen. Reverse iterative image encryption scheme using 8-layer cellular automata[J]. KSII Transactions on Internet & Information Systems,2016,10(7):
[2] Souyah A, Faraoun K M. Fast and efficient randomized encryption scheme for digital images based on Quadtree decomposition and reversible memory cellular automata[J]. Nonlinear Dynamics, 2015, 84(2):715-732.
[3] 袁野, 陈炬桦. 一种基于二维变邻居混合可逆细胞自动机的加密算法[J]. 小型微型计算机系统, 2015, 36(11):2594-2598.
Yuan Ye, Chen Ju-ye. An encryption algorithm based on two dimensional voriable neighborhood reversible celluor automata[J].Small Microcompater System,2015,36(11):2594-2598.
[4] Tralic D, Grgic S. Robust image encryption based on balanced cellular automaton and pixel separation[J]. Radio engineering, 2016, 25(3):548-555.
[5] 宫姗. 一种基于混合细胞自动机的加密算法研究[D]. 长春:东北师范大学物理学院, 2016.
Gong Shan. Study of an encryption algorithm based on hybrid cellular automata[D]. Changchun: College of Physics,Norteest Normal University,2016.
[6] 吴颖芝, 郝立波, 陈炬桦. T型邻居细胞自动机的分组加密方法[J]. 通信学报, 2009, 30(f增刊2):52-60.
Wu Ying-zhi, Hao Li-bo, Chen Ju-ye. Block encryption method for T-type neighbor cellulav automata[J]. Journal of Communications,2009,30(Sup.2):52-60.
[7] Chen T, Zhang M, Wu J, et al. Image encryption and compression based on kronecker compressed sensing and elementary cellular automata scrambling[J]. Optics & Laser Technology, 2016, 84:118-133.
[8] Souyah A, Faraoun K M. An image encryption scheme combining chaos-memory cellular automata and weighted histogram[J]. Nonlinear Dynamics, 2016, 86(1):1-15.
[9] Chai X, Gan Z, Chen Y, et al. A visually secure image encryption scheme based on compressive sensing[J]. Signal Processing, 2017, 134:35-51.
[10] Macêdo H B, Oliveira G M B, Ribeiro C H C. A comparative study between the dynamic behaviours of standard cellular automata and network cellular automata applied to cryptography[J]. International Journal of Intelligent Systems, 2016, 31(2):189-207.
[1] 张金果,郭海涛,吴君鹏,李依桐. 改进的最小交叉Tsallis熵的小目标声呐图像分割[J]. 吉林大学学报(工学版), 2014, 44(3): 834-839.
[2] 田海江,雷鹏,王永. 基于混沌和DNA动态编码的图像加密算法[J]. 吉林大学学报(工学版), 2014, 44(3): 801-806.
[3] 冯鑫, 王晓明, 党建武, 沈瑜. 基于插值Directionlet变换的图像融合方法[J]. 吉林大学学报(工学版), 2013, 43(04): 1127-1132.
[4] 刘鹏, 田小建, 曹军胜, 杨悦. 基于掺铒光纤激光器超混沌特性的图像加密算法[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 405-409.
[5] 赵宏伟, 刘宇琦, 程禹, 刘君玲. 基于相位相关的图像匹配算法[J]. 吉林大学学报(工学版), 2011, 41(增刊1): 183-188.
[6] 赵宏伟, 刘静, 陈华程, 崔弘睿. 一种改进的轮廓提取评估算法[J]. 吉林大学学报(工学版), 2011, 41(增刊1): 179-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 臧鹏飞, 王哲, 孙晨乐, 林炼炼. 直线增程器稳态运行换气过程[J]. 吉林大学学报(工学版), 2018, 48(5): 1455 -1465 .
[2] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931 -1937 .