吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (6): 1931-1937.doi: 10.13229/j.cnki.jdxbgxb20171009

• • 上一篇    下一篇

基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法

刘仲民1(),王阳1,李战明1,胡文瑾2   

  1. 1. 兰州理工大学 电气工程与信息工程学院,兰州 730050
    2. 西北民族大学 数学与计算机科学学院,兰州 730030
  • 收稿日期:2017-09-27 出版日期:2018-11-20 发布日期:2018-12-11
  • 作者简介:刘仲民(1978-),男,副教授,博士研究生.研究方向:智能信息处理及模式识别.
  • 基金资助:
    国家自然科学基金项目(61561042);西北民族大学引进人才基金项目;西北民族大学“一优三特”学科中央高校基本科研业务费基金项目(31920180117)

Image segmentation algorithm based on SLIC and fast nearest neighbor region merging

LIU Zhong-min1(),WANG Yang1,LI Zhan-ming1,HU Wen-jin2   

  1. 1. College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China
    2. College of Mathematics and Computer Science,Northwest Minzu University,Lanzhou 730030,China
  • Received:2017-09-27 Online:2018-11-20 Published:2018-12-11

摘要:

针对传统区域邻接图在描述数据结构时,搜索全局最优解难的问题,提出了一种基于简单线性迭代聚类(SLIC)和快速最近邻区域合并的图像分割算法。该方法在区域邻接图基础上引入了最近邻接图来优化全局搜索,首先用SLIC超像素算法将图像分割成小区域,利用区域邻接图(RAG)和最近邻接图(NNG)的邻接表数据结构来描述区域之间的关系,然后计算每个待合并区域与其所有邻接区域之间的不相似度函数值,最后合并不相似度值最小的区域。实验结果表明:本文方法能较好地将最相似的区域进行合并,与传统的区域合并算法相比,降低了合并计算的复杂度,大幅度提高了区域合并的准确性。

关键词: 信息处理技术, 图像分割, 简单线性迭代聚类, 区域邻接图, 最近邻接图, 区域合并

Abstract:

It is difficult to search the global optimal solution when traditional region adjacency graph is used to describe the data structure. To solve this problem, an image segmentation algorithm based on SLIC and fast nearest neighbor region merging is proposed. This method introduces the nearest neighbor graph to optimize the global search based on the region adjacency graph. First, an image is divided into small regions by SLIC superpixel algorithm, in which the relation between regions is described by the adjacency table structure of the Region Adjacency Graph (RAG) and the Nearest Neighbor Graph (NNG). Then, the value of the dissimilarity function is calculated between each region to be merged with all of its adjacent regions. Finally, the region with the least similarity is merged. The experimental results show that the proposed algorithm can combine the most similar regions, and reduce the complexity of the merging calculation compared with the traditional region merging algorithm, which greatly improves the accuracy of the regional merging.

Key words: information processing technology, image segmentation, simple linear iterative clustering(SLIC), region adjacency graph(RAG), nearest neighbor graph(NNG), region merging

中图分类号: 

  • TP391.4

图1

不同k值的分割结果"

图2

不同m值的分割结果"

图3

RAG和NNG示意图"

图4

RAG示意图和转化为NNG示意图"

图5

分割结果"

表1

分割评价指标"

算法 第1幅图像 第2幅图像 第3幅图像
Precision Recall F-score Precision Recall F-score Precision Recall F-score
NCUT 0.4752 0.5621 0.5150 0.4092 0.6561 0.5040 0.5628 0.5426 0.5525
SCOW 0.6193 0.7036 0.6587 0.7969 0.8126 0.8046 0.6927 0.7683 0.7285
SLIC 0.6279 0.7964 0.7021 0.8024 0.7873 0.7947 0.7638 0.7026 0.7319
SLIC+DBSCAN 0.4235 0.6718 0.5195 0.6499 0.7263 0.6859 0.7289 0.6732 0.6999
MeanShift+MSRM 0.2843 0.3726 0.3225 0.8529 0.8021 0.8267 0.7046 0.7624 0.7323
本文算法 0.6754 0.9186 0.7784 0.8354 0.7980 0.8162 0.6830 0.7862 0.7309

表2

算法复杂度分析"

算法 时间复杂度
NCUT O(N2)
SCOW O(N)
SLIC O(N)
SLIC+DBSCAN O(N+N2)
MeanShift+MSRM O(TN2)
本文算法 O(N+log2(‖E‖))
[1] 章毓晋 . 图像分割中基于过渡区技术的统计调查[J]. 计算机辅助设计与图形学报, 2015,27(3):379-381.
Zhang Yu-jin . A survey on transition region-based techniques for image segmentation[J]. Journal of Computer-Aided Design & Computer Graphics, 2015,27(3):379-381.
[2] 舒速, 杨明 . 基于分水岭分割和稀疏表示的高光谱图像分类方法[J]. 计算机科学, 2016,43(2):89-94.
doi: 10.11896/j.issn.1002-137X.2016.2.020
Shu Su, Yang Ming . Hyperspectral image classification method based on watershed segmentation and sparse representation[J]. Computer Science, 2016,43(2):89-94.
doi: 10.11896/j.issn.1002-137X.2016.2.020
[3] Ren X, Malik J. Learning a classification model for segmentation [C]//9th IEEE International Conference on Computer Vision, Washington DC, 2003: 10-17.
[4] Wang W J, Nevatia R. Robust object tracking using constellation model with superpixel [C]//Proc of the 11th Asian Conference on computer Vision, Berlin, 2012: 191-204.
[5] Mori G, Ren X. Recovering human body configurations combining segmentation and recognition [C]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington DC, 2004: 326-333.
[6] Mori G. Guiding model search using segmentation [C]//Proc of the 10th IEEE International Conference on Computer Vision, Washing DC, 2005: 1417-1423.
[7] Achanta R, Shaji A, Smith K , et al. SLIC superpixels compared to state-of art superpixel methods[J]. IEEE Trans on Pattern Analysis and Intelligence, 2012,34(11):2274-2282.
doi: 10.1109/TPAMI.2012.120 pmid: 22641706
[8] 张亚亚, 刘小伟, 刘福太 , 等. 基于改进SLIC方法的彩色图像分割[J]. 计算机工程, 2015,41(4):205-209.
doi: 10. 3969/ j. issn. 1000-3428. 2015. 04. 039
Zhang Ya-ya, Liu Xiao-wei, Liu Fu-tai , et al. Color image segmentation based on improved SLIC method[J]. Computer Engineering, 2015,41(4):205-209.
doi: 10. 3969/ j. issn. 1000-3428. 2015. 04. 039
[9] 胡志立, 郭敏 . 基于SLIC的改进GrabCut彩色图像快速分割[J]. 计算机工程与应用, 2016,52(2):186-190.
doi: 10.3778/j.issn.1002-8331.1401-0088
Hu Zhi-li, Guo Min . Fast segmentation in color image based on SLIC and GrabCut[J]. Computer Engineering and Applications, 2016,52(2):186-190.
doi: 10.3778/j.issn.1002-8331.1401-0088
[10] 凌朝东, 陈虎, 杨骁 , 等. 结合SLIC超像素和DBSCAN聚类的眼底图像硬性渗出检测方法[J]. 华侨大学学报:自然版, 2015,36(4):399-405.
doi: 10.11830/ISSN.1000-5013.2015.04.0399
Ling Chao-dong, Chen Hu, Yang Xiao , et al. Fundus image hard exudates detection based on SLIC and superpixels and DBSCAN clustering[J]. Journal of Huaqiao University(Natural Science), 2015,36(4):399-405.
doi: 10.11830/ISSN.1000-5013.2015.04.0399
[11] Hu Zhong-wen, Zou Qiu. Watershed superpixel [C]//Proc of Internation Conference on Image Processing, Québec City, 2015.
[12] 李健宏, 付淇 . 一种基于图的分水岭区域合并算法[J]. 南昌大学学报:理科版, 2009,33(2):200-204.
doi: 10.3969/j.issn.1006-0464.2009.02.024
Li Jiang-hong, Fu Qi . A graph-based area merge algorithm which can be applied to watershed segmentation method[J]. Journal of Nanchang University(Natural Science), 2009,33(2):200-204.
doi: 10.3969/j.issn.1006-0464.2009.02.024
[13] Haris K, Efstratiadis S N, Maglaveras N , et al. Hybrid image segmentation using watersheds and fast region merging[J]. IEEE Transactions on Image Processing, 1998,7(12):1684-1699.
doi: 10.1109/83.730380 pmid: 18276235
[14] 孙丰, 秦开怀, 孙伟 , 等. 基于区域合并的图像显著性检测[J]. 计算机辅助设计与图形学学报, 2016,28(10):1679-1687.
Sun Feng, Qin Kai-huai, Sun Wei , et al. Image saliency detection based on region merging[J]. Journal of Computer-Aided Design & Computer Graphics, 2016,28(10):1679-1687.
[15] Yang J, He Y, Caspersen J . Region merging using local spectral angle thresholds: a more accurate method for hybrid segmentation of remote sensing images[J]. Remote Sensing of Environment, 2017,190:137-148.
doi: 10.1016/j.rse.2016.12.011
[16] Achanta R, Shaji A, Smith K . SLIC superpixels[DB/OL].[2017-09-19]..
[17] Achanta R, Shaji A, Smith K , et al. SLIC superpixels compared to state-of art superpixel methods[J]. IEEE Trans on Pattern Analysis and Machin Intelligence, 2012,34(11):2274-2282.
doi: 10.1109/TPAMI.2012.120 pmid: 22641706
[18] Shi J, Maiik J . Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,22(8):888-905.
[19] Ning J, Zhang L, Zhang D , et al. Interactive image segmentation by maximal similarity based region merging[J]. Pattern Recognition, 2010,43(2):445-456.
doi: 10.1016/j.patcog.2009.03.004
[20] Crevier D . Image segmentation algorithm development using ground truth image data sets[J]. Computer Vision & Image Understanding, 2008,112(2):143-159.
doi: 10.1016/j.cviu.2008.02.002
[21] 毛亮, 薛月菊, 孔德运 , 等. 基于稀疏场水平集的荔枝图像分割算法[J]. 农业工程学报, 2011,27(4):345-349.
doi: 10.3969/j.issn.1002-6819.2011.04.060
Mao Liang, Xue Yue-ju, Kong De-yun , et al. Litchi image segmentation algorithm based on sparse field level set[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011,27(4):345-349.
doi: 10.3969/j.issn.1002-6819.2011.04.060
[1] 托乎提努尔,张海龙,王杰,王娜,冶鑫晨,王万琼. 基于图形处理器的高速中值滤波算法[J]. 吉林大学学报(工学版), 2019, 49(3): 979-985.
[2] 付银娟,李勇,徐丽琴,张昆辉. NLFM⁃Costas射频隐身雷达信号设计及分析[J]. 吉林大学学报(工学版), 2019, 49(3): 994-999.
[3] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[4] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[5] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[6] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[7] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[8] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[9] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[10] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[11] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[14] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[15] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭孔辉,吴海东,卢荡 . 冰面上轮胎稳态侧偏刷子模型[J]. 吉林大学学报(工学版), 2007, 37(02): 253 -0258 .
[2] 张凤君,刘佳泓,马玖彤,回进 . 淀粉基可生物降解载体在同步
硝化反硝化中的应用
[J]. 吉林大学学报(工学版), 2008, 38(02): 319 -0322 .
[3] 孔繁森,王军,孙海港 . 基于层次分析法的发动机缸体生产线设备可用性的模糊综合评价[J]. 吉林大学学报(工学版), 2008, 38(06): 1332 -1336 .
[4] 李所军,高海波,邓宗全. 为月球车低能耗越障的摇臂悬架参数多目标优化[J]. 吉林大学学报(工学版), 2010, 40(03): 729 -0734 .
[5] 张晓伟,刘三阳,迟晓妮 . 高效求解多峰值全局优化的区间-遗传算法
[J]. 吉林大学学报(工学版), 2008, 38(04): 876 -879 .
[6] 姚国凤,高雪飞. 重 频 结 构 可 控 性[J]. 吉林大学学报(工学版), 2008, 38(06): 1359 -1365 .
[7] 荆忠胜, 秦玉春, 展鹏. 合成石英晶体Q值的快速分析方法[J]. 吉林大学学报(工学版), 2009, 39(04): 948 -952 .
[8] 段,孙同景,李振华, 黄长伟, 张光先. 全数字逆变电源IIR Butterworth数字滤波[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 311 -0314 .
[9] 马迅,王贺,那景新. 车身概念设计阶段CAE分析的肋筋等效模型[J]. 吉林大学学报(工学版), 2009, 39(06): 1431 -1434 .
[10] 黄艳国,许伦辉,邝先验. 模糊卡尔曼滤波在快速路行程时间估计中的应用[J]. 吉林大学学报(工学版), 2014, 44(3): 648 -654 .