吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (3): 989-995.doi: 10.13229/j.cnki.jdxbgxb20200640
Xiao-ran GUO1(),Ping LUO2,Wei-lan WANG3
摘要:
提出了一种基于Transformer编码器和BiLSTM的字级别中文命名实体识别方法,将字向量与位置编码向量拼接成联合向量作为字表示层,避免了字向量信息的损失和位置信息的丢失;利用BiLSTM为联合向量融入方向性信息,引入Transformer编码器进一步抽取字间关系特征。实验结果表明,该方法在MSRA数据集和唐卡数据集上的F1值分别达到了81.39%和86.99%,有效提升了中文命名实体识别的效果。
中图分类号:
1 | 张晓艳, 王挺, 陈火旺. 命名实体识别研究[J]. 计算机科学, 2005, 32(4):44-48. |
Zhang Xiao-yan, Wang Ting, Chen Huo-wang. Research on named entity recognition[J]. Computer Science, 2005, 32(4):44-48. | |
2 | 刘浏, 王东波. 命名实体识别研究综述[J]. 情报学报, 2018, 37(3): 329-340. |
Liu Liu, Wang Dong-bo. A review on named entity recognition[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(3):329-340. | |
3 | 张玥杰, 徐智婷, 薛向阳. 融合多特征的最大熵汉语命名实体识别模型[J]. 计算机研究与发展, 2008, 45(6):1004-1010. |
Zhang Yue-jie, Xu Zhi-ting, Xue Xiang-yang. Fusion of multiple features for Chinese named entity recognition based on maximum entropy model[J]. Journal of Computer Research and Development, 2008, 45(6):1004-1010. | |
4 | Morwal S, Jahan N, Chopra D. Named entity recognition using hidden Markov model[J]. International Journal on Natural Language Computing,2012, 1(4):15-23. |
5 | Ju Zhen-fei, Wang Jian, Zhu Fei. Named entity recognition from biomedical text using SVM[C]∥International Conference on Bioinformatics & Biomedical Engineering, Wuhan,China, 2011:1-4. |
6 | 王路路, 艾山·吾买尔, 买合木提·买买提,等. 基于CRF和半监督学习的维吾尔文命名实体识别[J]. 中文信息学报, 2018, 32(11):16-26, 33. |
Wang Lu-lu, Wumaier Aishan, Maimaiti Maihemuti, et al. A semi-supervised approach to uyghur named entity recognition based on CRF[J]. Journal of Chinese Information Processing, 2018, 32(11):16-26, 33. | |
7 | Maryam Habibi, Leon Weber, Mariana Neves, et al. Deep learning with word embeddings improves biomedical named entity recognition[J]. Bioinformatics, 2017, 33(14):37-48. |
8 | Lei J, Tang B, Lu X, et al. Research and applications: a comprehensive study of named entity recognition in Chinese clinical text[J]. Journal of the American Medical Informatics Association, 2014, 21(5):808-814. |
9 | Ji Y, Tong C, Liang J, et al. A deep learning method for named entity recognition in bidding document[J]. Journal of Physics:Conference Series, 2019, 1168(3):032076. |
10 | Levy O, Goldberg Y. Neural word embedding asimplicit matrix factorization[J/OL].[2020-08-12]. |
11 | Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. |
12 | Graves A, Jurgen S. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18(5/6):602-610. |
13 | Huang Z H, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging[J/OL].[2020-08-15]. |
14 | 李明浩, 刘忠, 姚远哲. 基于LSTM-CRF的中医医案症状术语识别[J]. 计算机应用, 2018, 38(2):42-46. |
Li Ming-hao, Liu Zhong, Yao Yuan-zhe. LSTM-CRF based symptom term recognition on traditional Chinese medical case[J]. Journal of Computer Applications, 2018, 38(2):42-46. | |
15 | Ma X Z, Hovy E. End-to-end sequence labeling via bidirectional LSTM-CNNs-CRF[J/OL]. [2020-08-15]. |
16 | 韩鑫鑫,贲可荣,张献. 军用软件测试领域的命名实体识别技术研究[J]. 计算机科学与探索, 2020, 14(5):740-748. |
Han Xin-xin, Ke-rong Ben, Zhang Xian. Research on named entity recognition technology in military software testing[J]. Journal of Frontiers of Computer Science & Technology, 2020, 14(5):740-748. | |
17 | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Proceedings of Advances in Neural Information Processing Systems, 2017(12):6000-6010. |
18 | Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J/OL].[2020-08-17]. |
19 | Rei M, Crichton G, Pyysalo S. Attending to characters in neural sequence labeling models[C]∥International Conference on Computational Linguistics, Osaka, Japan, 2016: 309-318. |
20 | 李明扬, 孔芳. 融入自注意力机制的社交媒体命名实体识别[J]. 清华大学学报:自然科学版, 2019, 59(6):461-467. |
Li Ming-yang, Kong Fang. Combined self-attention mechanism for named entity recognition in social media[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(6): 461-467. | |
21 | Yan H, Deng B, Li X N, et al. TENER: adapting transformer encoder for named entity recognition[J]. Computation and Language, 2019, 1:04474. |
22 | Li X Y, Meng Y X, Sun X F, et al. Is word segmentation necessary for deep learning of Chinese representations?[C]∥Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019:3242-3252. |
[1] | 燕杨, 文敦伟, 王云吉, 王珂. 基于层叠条件随机场的中文病历命名实体识别[J]. 吉林大学学报(工学版), 2014, 44(6): 1843-1848. |
|