吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (5): 1377-1384.doi: 10.13229/j.cnki.jdxbgxb.20230262

• 交通运输工程·土木工程 • 上一篇    

地震后建筑结构层间变形特征分布

邸振勇1(),杨新辉2   

  1. 1.西南大学 审计处,重庆 400715
    2.中国建筑科学研究院地基基础研究所,北京 100013
  • 收稿日期:2023-03-24 出版日期:2024-05-01 发布日期:2024-06-11
  • 作者简介:邸振勇(1969-),男,高级工程师.研究方向:工程技术(造价、管理).E-mail:dizhenyong3@163.com
  • 基金资助:
    中国建筑科学研究院科研课题项目(20151602330730037)

Characteristic distribution of inter story deformation of building structure after earthquake

Zhen-yong DI1(),Xin-hui YANG2   

  1. 1.Audit Office,Southwest University,Chongqing 400715,China
    2.Foundation Research Institute of Chinese Academy of Building Sciences,Beijing 100013,China
  • Received:2023-03-24 Online:2024-05-01 Published:2024-06-11

摘要:

进行建筑结构层间变形特征分析时未建模分析特征,导致分析效果较差,为解决上述问题,本文对地震后建筑结构层间变形分布特征展开研究。利用建筑信息模型技术建立建筑结构三维模型;引入广义层间位移谱法,构建层间位移等公式,进行建筑结构层间变形特征分布分析。研究结果表明:不同加速度下,层间位移随着加速度增加而增大;1层楼时弯矩、剪力和层间位移角分别达到237 kN·m、210 kN和1/231 rad,呈现最大的变化。分析结果与实际相符,可以有效地分析层间变形特征。

关键词: 建筑信息模型技术, 建筑结构, 层间变形, 分布特征, 三维模型, 层间位移谱

Abstract:

It is not modeling analysis characteristics lead to poor analysis effect in the analysis of interstory deformation characteristics of building structure. Therefore, the distribution characteristics of interstory deformation of building structure after earthquake are studied. It built structure 3D model is established by building information model technology. The generalized interstory displacement spectrum method is introduced to construct the interstory displacement formula and it realize the analysis of interstory deformation characteristic distribution of building structure. The results show that the interlayer displacement increases with the acceleration under different accelerations. The bending moment, shear force and interstory displacement angle of a one-story building reach 237 kN·m, 210 kN and 1/231 rad, respectively, showing the biggest changes. The analysis results are in agreement with the practice and it can be used to analyze the interlayer deformation characteristics effectively.

Key words: building information modeling technology, building structure, interlayer deformation, distribution characteristics, three-dimensional model, interlayer displacement spectrum

中图分类号: 

  • TU973.31

图1

建筑结构图"

表1

建筑结构设计参数"

参数取值
结构基准周期60年
使用年限70年
安全等级二级
地基等级甲级
设防烈度8度
场地类别二类
地震分组第一组
抗震等级一级
地面粗糙类别B类
轴压比0.21
柱端弯矩3.23

图2

建筑结构模型"

表2

模型信息参数"

名称数值/mm
中间板延伸长度50.0
上柱截面高900.0
上柱翼缘厚20.0
肩梁长度500.0
肩梁高度1555.0
顶板宽度660.0
底板厚20.0
顶板厚25.0
中部肋厚12.0
柱下肋厚20.0

图3

建筑模型"

表3

近场强震的地震波参数"

地震记录地震时间峰值加速度(PGA)/g时间间隔/ms方向
WHITTIER1987-10-1399.110.02270
FERNANDO1971-2-9150.780.02UD
MORGAN1984-4-2493.340.02320

图4

建筑结构层间位移"

图5

建筑结构高度的层间位移"

图6

建筑结构高度的弯矩变化"

图7

建筑结构不同楼层的剪力变化情况"

表4

建筑结构不同楼层的层间位移角"

楼层层间位移角/rad影响率/%
均值1/29711.2
1楼1/23114.8
2楼1/3509.3
3楼1/3459.4
1 郭光玲, 徐乾, 付江涛. 强震作用下高墩桥梁上部结构抗冲击性检测方法[J]. 吉林大学学报: 工学版, 2022, 52(7): 1582-1587.
Guo Guang-ling, Xu Qian, Fu Jiang-tao. Test method for impact resistance of high pier bridge superstructure under strong earthquake[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(7): 1582-1587.
2 刁璇, 盛娟, 倪小磊. 钢筋结构建筑不同结构点的抗震与变形监测[J]. 计算机仿真, 2022, 39(3): 490-494.
Diao Xuan, Sheng Juan, Ni Xiao-lei. Seismic resistance and deformation monitoring for different structural points of reinforced structure building[J]. Computer Simulation, 2022, 39(3): 490-494.
3 于仲洋, 张鸿儒, 邱滟佳, 等. 地震作用下相邻地下结构与土相互作用特性研究[J]. 地震工程学报, 2020, 42(2): 481-489.
Yu Zhong-yang, Zhang Hong-ru, Qiu Yan-jia, et al. Neighboring underground structure-soil interaction characteristics under seismic action[J]. China Earthquake Engineering Journal, 2020, 42(2): 481-489.
4 韩云山, 师欣莹, 高营, 等. 屈曲约束支撑应用于纯框架结构加固项目的地震响应分析[J]. 工程抗震与加固改造, 2020, 42(3): 37-42.
Han Yun-shan, Shi Xin-ying, Gao Ying, et al. Seismic response analysis of buckling restrained braces applied to a pure frame structure reinforcement project[J]. Earthquake Resistant Engineering and Retrofitting, 2020, 42(3): 37-42.
5 雷鸣, 尹思阳, 王德玲, 等. 基于静力推覆分析算法的高层建筑混凝土核心筒抗震性能模拟[J].吉林大学学报: 工学版, 2023, 53(9): 2573-2580.
Lei Ming, Yin Si-yang, Wang De-ling, et al. Simulation of seismic performance of concrete core tube of high-rise building based on static force nappe analysis algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(9): 2573-2580.
6 韩小雷, 张垒, 杨光, 等. 地震作用下中美规范RC结构层间位移角限值的对比研究[J]. 土木工程学报, 2020, 53(1): 31-38.
Han Xiao-lei, Zhang Lei, Yang Guang, et al. Comparative study on story drift limits of RC structures under earthquakes between Chinese codes and American codes[J]. China Civil Engineering Journal, 2020, 53(1): 31-38.
7 韩淼, 韩蓉, 孟令帅, 等. 近断层地震作用下软限位对层间隔震结构动力响应影响分析[J]. 振动与冲击, 2019, 38(15): 231-238.
Han Miao, Han Rong, Meng Ling-shuai, et al. Effects of soft limit on dynamic response of layered isolation structure under near-fault ground motion[J]. Journal of Vibration and Shock, 2019, 38(15): 231-238.
8 杨兴凯, 邓亚虹, 常江, 等. 地裂缝场地建筑结构动力响应特征及抗震设防研究[J]. 地震工程学报, 2022, 44(5): 1100-1109.
Yang Xing-kai, Deng Ya-hong, Chang Jiang, et al. Research on dynamic response characteristics and seismic fortification of building structures in ground fissure sites[J]. Journal of Seismic Engineering, 2022, 44(5): 1100-1109.
9 袁建力, 李胜才, 宋拓. 木构架古建筑的地震损伤特征与规律研究[J]. 地震工程与工程振动, 2022, 42(3): 22-33.
Yuan Jian-li, Li Sheng-cai, Song Tuo. Research on seismic damage characteristics and laws of ancient buildings with wooden frames[J]. Earthquake Engineering and Engineering Vibration, 2022, 42(3): 22-33.
10 Long H, Wang Z C, Zhang C S, et al. Nonlinear study on the structure-soil-structure interaction of seismic response among high-rise buildings[J]. Engineering Structures, 2021, 242(3): 1-16.
11 崔玥, 车伟, 罗垟, 等. 长持时地震作用下多层框架结构的抗倒塌性能评估[J]. 世界地震工程, 2019, 35(1): 150-156.
Cui Yue, Che Wei, Luo Yang, et al. Assessment on the anti-collapse performance of multi-story frame structure under long duration earthquakes[J]. World Earthquake Engineering, 2019, 35(1): 150-156.
12 颜桂云, 潘晨阳, 薛潘荣, 等. 近断层脉冲型地震动作用下高层摩擦摆基础隔震结构的减震性能研究[J]. 世界地震工程, 2019, 35(3): 45-55.
Yan Gui-yun, Pan Chen-yang, Xue Pan-rong, et al. Seismic absorption performance of base-isolated high-rise structures using friction pendulums subjected to near-fault pulse ground motions[J]. World Earthquake Engineering, 2019, 35(3): 45-55.
13 刘伯权, 马煜东, 苏佶智, 等. 钢筋混凝土框架结构层间弹塑性位移计算方法及试验研究[J]. 建筑结构学报, 2022, 43(2): 116-126.
Liu Bo-quan, Ma Yu-dong, Su Ji-zhi, et al. Calculation method and experimental study of elasto-plastic inter-story drift of reinforced concrete frame structures[J]. Journal of Building Structures, 2022, 43(2): 116-126.
14 薛建阳, 胡宗波, 刘祖强. 型钢混凝土异形柱框架结构平扭振动反应及地震内力分析[J]. 振动与冲击, 2019, 38(14): 74-82.
Xue Jian-yang, Hu Zong-bo, Liu Zu-qiang. Analysis on lateral-torsional vibration responses and seismic forces of a steel reinforced concrete frame structure with special-shaped columns[J]. Journal of Vibration and Shock, 2019, 38(14): 74-82.
15 刘春阳, 史若凡, 王乐超, 等. 钢筋混凝土耗能墙抗震性能试验研究及结构地震响应分析[J]. 地震研究, 2021, 44(4): 689-699.
Liu Chun-yang, Shi Ruo-fan, Wang Le-chao, et al. Experimental study on seismic behavior of reinforced concrete energy dissipation wall and analysis of seismic response of structure[J]. Journal of Seismological Research, 2021, 44(4): 689-699.
16 杜永峰, 池佩红. PC隔震框架预制单元拆分及整体结构地震损伤分析[J]. 建筑科学与工程学报, 2020, 37(3): 28-36.
Du Yong-feng, Chi Pei-hong. Precast component division and seismic damage analysis of PC isolated frame[J]. Journal of Architecture and Civil Engineering, 2020, 37(3): 28-36.
17 安东亚. 罕遇地震作用下超高层结构位移响应周期缩短原因分析[J]. 建筑结构, 2020, 50(18): 91-95.
An Dong-ya. Cause analysis of "shortening" of displacement response period for super high-rise structure under rare earthquake[J]. Building Structure, 2020, 50(18): 91-95.
[1] 陈俊,王韶纤,胥卉,莫端泉,霍静思,邓旭华. 负弯矩作用下可拆卸预制装配式组合梁力学性能试验[J]. 吉林大学学报(工学版), 2022, 52(3): 604-614.
[2] 尼颖升, 孙启鑫, 马晔, 徐栋. 基于拉应力域的波形钢腹板组合梁承载力配筋计算[J]. 吉林大学学报(工学版), 2018, 48(1): 148-158.
[3] 张彦玲, 孙瞳, 侯忠明, 李运生. 隔板式钢-混凝土曲线组合梁弯扭性能[J]. 吉林大学学报(工学版), 2015, 45(4): 1107-1114.
[4] 王春刚, 张壮南, 赵大千, 曹宇飞. 腹板开孔Σ形复杂卷边槽钢轴压承载力试验[J]. 吉林大学学报(工学版), 2015, 45(3): 788-796.
[5] 李海锋,郭小农,罗永峰,高轩能. 索支撑柔性摩天轮结构抗倒塌性能分析[J]. 吉林大学学报(工学版), 2015, 45(2): 406-413.
[6] 云迪, 刘贺, 张素梅. 中承式钢管混凝土拱桥弹塑性地震时程分析[J]. 吉林大学学报(工学版), 2014, 44(6): 1633-1638.
[7] 郭俊平1, 邓宗才1, 卢海波2, 林劲松2. 预应力高强钢绞线网抗剪加固钢筋混凝土梁试验[J]. 吉林大学学报(工学版), 2014, 44(4): 968-977.
[8] 姜封国, 赵景鲁. 受火后钢筋混凝土构件的可靠性[J]. 吉林大学学报(工学版), 2013, 43(06): 1500-1503.
[9] 云迪, 刘贺, 张素梅. 大跨中承式钢管混凝土拱桥的自振特性及稳定性[J]. 吉林大学学报(工学版), 2013, 43(01): 86-91.
[10] 王新颖, 刘钢, 谷方明, 肖巍. 三维模型检索中的语义与形状异构特征融合[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 359-363.
[11] 石永久, 杨璐, 王元清, 李秋喆. 简支深肋组合扁梁抗弯刚度[J]. 吉林大学学报(工学版), 2010, 40(06): 1550-1555.
[12] 李黎明,陈以一,李宁,蔡玉春. 外套管式冷弯方钢管与H型钢梁连接节点的抗震性能[J]. 吉林大学学报(工学版), 2010, 40(01): 67-0071.
[13] 蔡健,陈国栋,左志亮,吴轶 . 受压弦杆填充混凝土的带悬挑预应力矩形钢管桁架[J]. 吉林大学学报(工学版), 2009, 39(02): 393-0397.
[14] 欧阳志为,郑文忠 . 火灾下有粘结预应力混凝土简支梁板的
变形非线性分析
[J]. 吉林大学学报(工学版), 2009, 39(02): 402-0407.
[15] 张素梅,云迪 . 大跨中承式钢管混凝土拱桥的横撑布置[J]. 吉林大学学报(工学版), 2009, 39(01): 108-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!