吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (2): 577-590.doi: 10.13229/j.cnki.Jdxbgxb.20230411

• 交通运输工程·土木工程 • 上一篇    

污染天气居民通勤模式选择影响因素的链式效用

李昱燃1(),汪飞2,朱才华1,韩飞1,李岩1()   

  1. 1.长安大学 运输工程学院,西安 710064
    2.中交第一公路勘察设计研究院有限公司,西安 710075
  • 收稿日期:2023-04-26 出版日期:2025-02-01 发布日期:2025-04-16
  • 通讯作者: 李岩 E-mail:l_yuran@163.com;lyan@chd.edu.cn
  • 作者简介:李昱燃(1998-),女,博士研究生. 研究方向:出行行为分析. E-mail: l_yuran@163.com
  • 基金资助:
    国家自然科学基金项目(51408049);陕西省自然科学基础研究计划项目(2020JM-237)

Chain-effect utility of factors influencing residents' commuting mode choice in polluted weather

Yu-ran LI1(),Fei WANG2,Cai-hua ZHU1,Fei HAN1,Yan LI1()   

  1. 1.College of Transportation Engineering,Chang'an University,Xi'an 710064,China
    2.CCCC First Highway Consultants Co. ,Ltd. ,Xi'an 710075,China
  • Received:2023-04-26 Online:2025-02-01 Published:2025-04-16
  • Contact: Yan LI E-mail:l_yuran@163.com;lyan@chd.edu.cn

摘要:

为探究不同污染程度天气下居民知晓污染物吸入状况和风险时的完整通勤模式决策行为,构建了改进的基于节点次序最大相关-最小冗余的贪婪贝叶斯网络模型以分析不同影响因素的链式效用。告知居民其当前通勤模式的风险等级及不同出行方式的污染物吸入量,设计问卷以获取居民的污染天气出行意向。通过引入互信息论构建基于节点次序最大相关-最小冗余贪婪贝叶斯网络结构学习算法,在学习贝叶斯网络结构的基础上进行参数学习和网络推理,挖掘基于变量间因果关系的链式影响效用。对西安市居民的调查数据分析结果表明:轻度污染下影响程度最大的变量链为年龄-有无私家车-日常通勤模式-污染天气通勤模式,39%的居民重新选择的通勤模式风险等级低于日常通勤模式。重度污染下的影响因素链式效用表现为年龄-月收入-有无私家车-污染天气通勤模式,相邻变量间的相关关系分别呈正相关、正相关、正相关和负相关。研究揭示了不同污染条件下影响居民通勤方式的链式效用,有利于制定更具建设性的诱导策略以帮助居民健康出行。

关键词: 交通运输规划与管理, 完整通勤过程, 链式效用, 贝叶斯网络, OMRMRG模型, PM2.5吸入量

Abstract:

To explore the complete commuting mode choice behavior when residents are aware of PM2.5 inhalation and risk under different polluted weather, a revised ordering-based max-relevance and min-redundancy greedy (OMRMRG) Bayesian Network model was established to analyze the chain-effect utility of various variables. A questionnaire was designed to obtain residents' travel intentions in polluted weather after informing them of the risk level of their current commuting patterns and the pollutant inhalation of different travel modes. An OMRMRG structural learning algorithm with the introduction of mutual information theory was proposed to explore the chain-effect utility based on the causal relationship between variables. The results of analyzing the survey data of Xi'an residents show that: the variable chain with the greatest influence under light pollution is age-the presence of private car-daily commuting mode-polluted weather commuting mode, and 39% of residents reselect a commuting mode with a lower risk level than the daily commuting mode. The chain-effect utility of the influencing factors under heavy pollution is shown as age-income-the presence of private car-polluted weather commuting mode, and the correlations between the adjacent variables are positive, positive, positive and negative, respectively. The study reveals the chain-effect utility of different pollution conditions affecting residents' commuting patterns, which is beneficial to develop more constructive induced strategies to help residents travel healthily.

Key words: transportation planning and management, complete commuting process, chain-effect utility, Bayesian network, OMRMRG model, PM2.5 inhalation volume

中图分类号: 

  • U268.6

表1

不同场景下每分钟PM2.5吸入量 (L/min)"

方式年龄/岁轻度污染中度污染重度污染方式年龄/岁轻度污染中度污染重度污染
步行<222.691.743.582.314.673.01步行31~452.301.603.061.603.992.78
22~302.471.673.282.224.282.8946~602.211.572.941.573.832.73
骑行<224.452.835.923.767.724.90骑行31~453.662.544.872.546.344.41
22~304.002.655.323.536.934.5946~603.502.494.652.496.064.32
公交<222.521.553.352.074.372.69公交31~451.961.352.611.353.412.33
22~302.211.442.941.923.832.4946~601.831.312.441.313.172.26
地铁<222.581.763.432.344.473.05地铁31~452.101.592.791.593.642.76
22~302.301.673.062.223.992.8946~602.001.532.671.533.472.66
汽车<221.570.802.091.072.731.39汽车31~450.820.521.090.521.430.91
22~301.140.661.520.881.981.1446~600.660.460.880.461.140.80

表2

PM2.5吸入风险等级划分表"

空气质量

指数类别

AQI

指数值

PM2.5浓度限值/(μg·m-3

PM2.5吸入量限值/

(μg·min-1

等级

表示

颜色

对健康影响情况
0~500~350~0.55绿色 基本无空气污染
51~10036~750.56~1.17黄色 空气质量可接受,但可能对极少数异常敏感人群健康有较小影响
轻度污染101~15076~1151.18~1.80橙色 易感人群症状有轻度加剧,健康人群出现刺激症状
中度污染151~200116~1501.81~2.34红色 进一步加剧易感人群症状,可能对健康人群心脏、呼吸系统有影响
重度污染201~300151~2502.35~3.91紫色 心脏病和肺病患者症状加剧,运动耐受力降低,健康人群普遍出现症状
严重污染>300>250>3.91褐红色 健康人群运动耐受力降低,有明显强烈症状,提前出现某些疾病

图1

被调查者个人属性"

表3

调查问卷变量名称"

属性变量符号定义

通勤者个

人属性

性别Gen0:女性 1:男性
年龄/岁Age1:<22 2:22~30 3:31~45 4:46~60
受教育程度Edu1:小学及以下 2:初中 3:高中(中专)4:本科(大专)5:研究生
家庭月收入/元Inc

1:<2 000 2:2 000~5 000 3:5 000~10 000 4:10 000~20 000

5:>20 000

吸烟状况Smo0:无 1:有
是否有心脏病或呼吸系统疾病史Sick0:无 1:有
私家车拥有情况Car0:无车 1:有车
非机动车拥有情况Bike0:无车 1:有车
通勤模式通勤距离Dis1:0~3 km 2:3~5 km 3:5~10 km 4:>10 km
完整通勤过程Mode需填写完整通勤链(如步行5 min-骑行10 min-地铁30 min-步行6 min),不足5 min的通勤方式忽略不计
早上通勤时间MT6:00~7:00(XMT1); 7:00~8:00(XMT2); 8:00~9:00(XMT3); 其他时间(XMT4) (若超过1 h,以整个通勤过程中的时间占比最长的时间段为准)
晚上通勤时间ET17:00~18:00(XET1); 18:00~19:00(XET2); 19:00~20:00(XET3); 其他(XET4) (若超过1 h,以整个通勤过程中的时间占比最长的时间段为准)
污染感知空气质量预报关注程度Wea1:基本不;2:偶尔;3:经常
PM2.5的危害了解程度Risk1:不了解;2:了解一些;3:了解
污染防护措施了解程度Pro1:不了解;2:了解一些;3:了解
是否采取污染防护措施Poll1:从不;2:偶尔;3:经常;4:总是
告知被调查者在3个场景下采用日常通勤模式时的风险等级和潜在危险,同时告知采用不同出行方式的PM2.5吸入量值和风险等级,具体空气质量指数类别和PM2.5吸入量对应风险等级划分参照表2
得知污染信息下的通勤模式场景一/二/三Scene1/2/33个场景下的完整通勤过程

图2

不同场景下被调查者PM2.5吸入风险等级分布"

图3

通勤方式选择与变量间的互信息值"

图4

各出行场景下的贝叶斯网络结构"

表4

不同贝叶斯网络学习算法性能对比"

算法场景一场景二场景三
平均运行时间/s平均识别率/%

平均BIC

评分

平均运行时间/s平均识别率/%

平均BIC

评分

平均运行时间/s平均识别率/%

平均BIC

评分

K2算法13.5383.45-2 643.1212.9383.56-2 758.9514.7382.74-2 690.44
爬山法14.1282.64-2 837.3814.5881.75-2 842.4314.9684.15-2 943.63
OMRMRG5.6490.56-1 834.296.3988.46-1 958.535.3490.70-2 068.97
改进OMRMRG3.8893.53-1 539.882.9492.94-1 746.863.2494.29-1 748.53

图5

不同场景下居民完整通勤过程选择结果"

图6

不同场景下影响链内变量间概率分布表"

图7

污染天气下通勤方式选择后验概率分布图"

1 魏彤, 李政蕾, 陈昱, 等. 长三角居民PM2.5暴露水平下降健康经济效益评估[J]. 中国环境科学, 2023, 43(6): 3211-3219.
Wei Tong, Li Zheng-lei, Chen Yu, et al. Assessment of the health and economic benefits of declining PM2.5 levels in the yangtze river delta[J]. China Environmental Science, 2023, 43(6): 3211-3219.
2 Behrentz E, Sabin L D, Winter A M, et al. Relative importance of school bus-related microenvironments to children's pollutant exposure[J]. Journal of the Air & Waste Management Association, 2005, 55(10): 1418-1430.
3 Zhu C H, Fu Z K, Liu L J, et al. Health risk assessment of PM2.5 on walking trips[J]. Scientific Reports, 2021, 11: 19249.
4 熊秀琴, 李怡雪, 赵昂, 等. 北京市地铁车厢内PM2.5污染情况及通勤人员的相关认知[J]. 环境与职业医学, 2018, 35(7): 583-588.
Xiong Xiu-qin, Li Yi-xue, Zhao Ang, et al. PM2.5 concentrations in subway cars in Beijing and related awareness of subway passengers[J]. Journal of Environmental & Occupational Medicine, 2018, 35(7): 583-588.
5 Fan S, Minjie J, Tao Z, et al. Satisfaction differences in bus traveling among low-income individuals before and after COVID-19 [J]. Transportation Research, Part A: Policy and Practice, 2022, 160: 311-332.
6 马壮林, 崔姗姗, 胡大伟. 限行政策下城市居民低碳出行意向[J]. 吉林大学学报: 工学版, 2022, 52(11): 2607-2617.
Ma Zhuang-lin, Cui Shan-shan, Hu Da-wei. Urban residents' low⁃carbon travel intention after implementation of driving restriction policy[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(11): 2607-2617.
7 Mashrur R. Commute mode switch and its relationship to life events, built-environment, and attitude change[J]. Transportation Research Part D: Transport and Environment, 2023, 120: No.103777.
8 Paulssen M, Temme D, Vij A, et al. Values, attitudes and travel behavior: a hierarchical latent variable mixed Logit model of travel mode choice[J]. Transportation, 2014, 41(4): 873-888.
9 马莹莹, 陆思园, 张晓明, 等. 考虑个体风险偏好差异的高速公路出行选择模型[J]. 吉林大学学报: 工学版, 2021, 51(5): 1673-1683.
Ma Ying-ying, Lu Si-yuan, Zhang Xiao-ming, et al. Model of highway travel selection considering individual risk preference difference[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(5): 1673-1683.
10 Pnevmatikou A M, Karlaftis M G, Kepaptsoglou K. Metro service disruptions: how do people choose to travel?[J]. Transportation, 2015, 42(6): 933-949.
11 Agustin J V, Ricardo G, Paul B, et al. Characterising public transport shifting to active and private modes in South American capitals during the COVID-19 pandemic[J]. Transportation Research, Part A: Policy and Practice, 2022, 164: 186-205.
12 柳伍生, 潘自翔, 魏隽君, 等. 地铁站点运营中断下周边乘客的出行行为研究[J]. 铁道科学与工程学报, 2020, 17(11): 2953-2961.
Liu Wu-sheng, Pan Zi-xiang, Wei Juan-jun, et al. Research on the travel behavior of subway passengers under the influence of operation interruption[J]. Journal of Railway Science and Engineering, 2020, 17(11): 2953-2961.
13 钟异莹, 陈坚, 邵毅明, 等. 考虑居住区位的公共交通出行行为分析模型[J]. 交通运输系统工程与信息, 2020, 20(6): 219-225.
Zhong Yi-ying, Chen Jian, Shao Yi-ming, et al. Analysis model of travel behavior in public transportation considering residential location[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(6): 219-225.
14 Borhan N M, Ibrahim H N A, Miskeen A A M. Extending the theory of planned behaviour to predict the intention to take the new high-speed rail for intercity travel in Libya: assessment of the influence of novelty seeking, trust and external influence[J]. Transportation Research Part A: Policy and Practice, 2019, 130: 373-384.
15 Zhu C H, Xue Y B, Li Y R, et al. Assessment of particulate matter inhalation during the trip process with the considerations of exercise load[J]. Science of the Total Environment, 2023, 866(25): 161277.
16 Li Y, Wang F, Ke H, et al. A driver's physiology sensor-based driving risk prediction method for lane-changing process using hidden Markov model [J]. Sensors, 2019, 19(12): 2670.
17 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京:中国环境科学出版社, 2013.
18 刘佳雨, 冷军强, 尚平, 等. 冰雪路面下高速公路事故及严重程度影响因素分析[J]. 哈尔滨工业大学学报, 2022, 54(3): 57-64.
Liu Jia-yu, Leng Jun-qiang, Shang Ping, et al. Analysis of traffic crashes and injury severity influence factors for ice-snow covered freeway roads[J]. Journal of Harbin Institute of Technology, 2022, 54(3): 57-64.
19 贾柳娜, 董绵绵, 贺楚超, 等. 一种优化节点序搜索算子的BN结构学习方法[J]. 西北工业大学学报, 2023, 41(2): 419-427.
Jia Liu-na, Dong Mian-mian, He Chu-chao, et al. A bayesian network structure learning method for optimizing ordering search operator[J]. Journal of Northwestern Polytechnical University, 2023, 41(2): 419-427.
20 Byun J E, Song J H. A general framework of Bayesian network for system reliability analysis using junction tree[J]. Reliability Engineering and System Safety, 2021, 216: 107952.
21 邸若海, 李叶, 万开方, 等. 基于改进QMAP的贝叶斯网络参数学习算法[J]. 西北工业大学学报, 2021, 39(6): 1356-1367.
Di Ruo-hai, Li Ye, Wan Kai-fang, et al. Bayesian network parameter learning algorithm based on improved QMAP[J]. Journal of Northwestern Polytechnical University, 2021, 39(6): 1356-1367.
22 Schwarz G. Estimating dimensions of a model[J]. Annals of Statistics, 1978, 6(2): 461-464.
23 Jyoti K M, Anil N, Dan H, et al. Analysis of various transport modes to evaluate personal exposure to PM2.5 pollution in Delhi[J]. Atmospheric Pollution Research, 2021, 12(2): 417-431.
[1] 高天洋,胡大伟,姜瑞森,吴雪,刘慧甜. 基于模块化车辆的区域灵活接驳公交线路优化[J]. 吉林大学学报(工学版), 2025, 55(2): 537-545.
[2] 徐慧智,蒋时森,王秀青,陈爽. 基于深度学习的车载图像车辆目标检测和测距[J]. 吉林大学学报(工学版), 2025, 55(1): 185-197.
[3] 郑长江,陶童统,陈志超. 基于流量可调重分配的级联失效模型[J]. 吉林大学学报(工学版), 2024, 54(9): 2441-2450.
[4] 温晓岳,钱国敏,孔桦桦,缪月洁,王殿海. TrafficPro:一种针对城市信控路网的路段速度预测框架[J]. 吉林大学学报(工学版), 2024, 54(8): 2214-2222.
[5] 闫云娟,查伟雄,石俊刚,严丽平. 基于随机充电需求的充电桩优化双层模型[J]. 吉林大学学报(工学版), 2024, 54(8): 2238-2244.
[6] 曲大义,刘浩敏,杨子奕,戴守晨. 基于车路协同的交通瓶颈路段车流动态分配机制及模型[J]. 吉林大学学报(工学版), 2024, 54(8): 2187-2196.
[7] 陈桂珍,程慧婷,朱才华,李昱燃,李岩. 考虑驾驶员生理信息的城市交叉口风险评估方法[J]. 吉林大学学报(工学版), 2024, 54(5): 1277-1284.
[8] 赵晓华,刘畅,亓航,欧居尚,姚莹,郭淼,杨海益. 高速公路交通事故影响因素及异质性分析[J]. 吉林大学学报(工学版), 2024, 54(4): 987-995.
[9] 杨秀建,贾晓寒,张生斌. 考虑汽车队列动态特性的混合交通流特性[J]. 吉林大学学报(工学版), 2024, 54(4): 947-958.
[10] 范博松,邵春福. 城市轨道交通突发事件风险等级判别方法[J]. 吉林大学学报(工学版), 2024, 54(2): 427-435.
[11] 郑长江,胡欢,杜牧青. 考虑枢纽失效的多式联运快递网络结构设计[J]. 吉林大学学报(工学版), 2023, 53(8): 2304-2311.
[12] 王殿海,胡佑薇,蔡正义,曾佳棋,姚文彬. 基于BPR函数的城市道路间断流动态路阻模型[J]. 吉林大学学报(工学版), 2023, 53(7): 1951-1961.
[13] 李艳波,柳柏松,姚博彬,陈俊硕,渠开发,武奇生,曹洁宁. 考虑路网随机特性的高速公路换电站选址[J]. 吉林大学学报(工学版), 2023, 53(5): 1364-1371.
[14] 胡莹,邵春福,王书灵,蒋熙,孙海瑞. 基于共享单车骑行轨迹的骑行质量识别方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1040-1046.
[15] 王占中,蒋婷,张景海. 基于模糊双边界网络模型的道路运输效率评价[J]. 吉林大学学报(工学版), 2023, 53(2): 385-395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!