吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (3): 1072-1081.doi: 10.13229/j.cnki.jdxbgxb.20230566

• 计算机科学与技术 • 上一篇    

基于Vitis HLS的FIR滤波器设计及其性能分析

张海龙1,2,3,4(),杜旭1,2,张萌1,2,张亚州1,2,王杰1,4,冶鑫晨1,4,王万琼1,李嘉1,吴涵1,2,张婷1,2   

  1. 1.中国科学院 新疆天文台,乌鲁木齐 830011
    2.中国科学院大学,北京 100049
    3.中国科学院 射电天文重点实验室,南京 210008
    4.国家天文科学数据中心,北京 100101
  • 收稿日期:2023-06-06 出版日期:2025-03-01 发布日期:2025-05-20
  • 作者简介:张海龙(1980-),男,正高级工程师,博士.研究方向:数据密集型研究.E-mail:zhanghailong@xao.ac.cn
  • 基金资助:
    国家重点研发计划项目(2021YFC2203502);国家自然科学基金项目(12173077);新疆维吾尔自治区天山创新团队计划项目(2022D14020);“天山英才”培养计划项目(2022TSYCCX0095);中国科学院科研仪器设备研制项目(PTYQ2022YZZD01);国家天文科学数据中心;中国科学院天文台站设备更新及重大仪器设备运行专项经费;新疆维吾尔自治区自然科学基金项目(2022D01A360);中国科学院“西部之光”人才培养引进计划项目(2022-XBQNXZ-012)

Filter design and performance analysis based on vitis HLS

Hai-long ZHANG1,2,3,4(),Xu DU1,2,Meng ZHANG1,2,Ya-zhou ZHANG1,2,Jie WANG1,4,Xin-chen YE1,4,Wan-qiong WANG1,Jia LI1,Han WU1,2,Ting ZHANG1,2   

  1. 1.Xinjiang Astronomical Observatory,Chinese Academy of Sciences,Urumqi 830011,China
    2.University of;Chinese Academy of Sciences,Beijing 100049,China
    3.Key Laboratory of Radio Astronomy,Chinese Academy of;Sciences,Nanjing 210008,China
    4.National Astronomical Data Center,Beijing 100101,China
  • Received:2023-06-06 Online:2025-03-01 Published:2025-05-20

摘要:

针对硬件开发过程中存在编程效率低、开发难度高及Vivado HLS资源使用率高等问题,利用Vivado及Vitis HLS平台设计并实现了基于127阶Hamming窗的流水线式直接型并行结构有限冲激响应滤波器,在Vivado Simulator环境下对比了HDL FIR IP、HLS FIR IP与XILINX FIR IP的滤波表现,详细分析了不同实现方式在资源使用率、时序、功耗、执行时间等方面的差异。实验结果表明:在相同条件下HLS FIR IP相较HDL FIR IP及XILINX FIR IP的资源使用率降低了1%,执行时间分别降低了24.5%、808.2%,且代码量节省了98.5%。以本文实验方法为基础与前人工作进行对比,客观分析了在一定条件下不同开发平台及方式的效率差异,结果表明本文设计方法可显著降低逻辑单元和存储资源的使用率,并提升开发效率。

关键词: 天文信息技术, 高层次综合, FIR滤波器, Vitis HLS, Verilog

Abstract:

To address the problems of low programming efficiency, high development difficulty and high Vivado HLS resource utilization in the hardware development process, a pipelined direct parallel finite impulse response filter was designed and implemented with a 127-order Hamming window using Vivado and Vitis HLS platforms. And the filtering performance of HDL FIR IP, HLS FIR IP, and XILINX FIR IP in the Vivado Simulator environment was compared. Detailed analysis was conducted on the differences in resource utilization, timing, power consumption and execution time among different implementation methods. The experimental results show that under the same conditions, the resource utilization of HLS FIR IP is reduced by 1% compared with HDL FIR IP and XILINX FIR IP, the execution time is reduced by 24.5% and 808.2% respectively, and the code size is saved by 98.5%. Based on the proposed experimental method, a comparison was made with previous work to objectively analyze the efficiency differences of different development platforms and methods under certain conditions. The results show that our design method can significantly reduce the usage of logic units and storage resources and improve the development efficiency.

Key words: astroinformatics, high-level synthesis, FIR filter, vitis HLS, verilog

中图分类号: 

  • TP301.6

图1

不同窗函数的频率响应比较"

图2

直接型FIR滤波器结构"

图3

高层次综合生成FIR IP核流程"

图4

HDL FIR块设计图"

图5

HLS FIR块设计图"

图6

XILINX FIR块设计图"

图7

滤波结果时域对比图"

图8

滤波结果频域对比图"

图9

资源使用数量对比图"

图10

资源使用率对比图"

表1

时序比较表"

参 数HDL FIR IPHLS FIR IPXILINX FIR IP
最差负时序裕量/ns8.794.5829.728
最差保持时序裕量/ns0.0220.0240.011
最差脉冲宽度时序裕量/ns5.6775.6775.677
时序裕量之和/ns14.48910.28315.416

表2

功耗比较表"

HDL FIR IPHLS FIR IPXILINX FIR IP
片上总功耗/W1.2431.2281.137
预计结温/℃26.026.026.0
热裕度/℃74.074.074.0
有效热阻/(℃·W-10.80.80.8

图11

执行时间波形图"

表3

127阶不同实现方式下HDL与HLS的性能比较"

方法HDL语言HLS工具比较项

资源使用率

之和/%

时序裕量之和

或时钟速度

总功耗/W执行时间

编程时间

或代码行

Zwagerman13VerilogVivado HLS 2013.4

图像

滤波

HDL:129.8

HLS:133.1

HDL:200 MHz

HLS:181 MHz

--

HDL:33 h

HLS:15 h

Roberto MillónVHDLVivado HLS 2019.1

Sobel

边缘检测

HDL:2.9

HLS:8.4

--

HDL:58 ms

HLS:82.9 ms

HDL:493LOC

HLS:90LOC

Srilakshmi等VHDL

Vitis HLS

N/A

CNN卷

积层

HDL:0.7

HLS:2.4

----
本文Verilog

Vitis HLS

2022.1

FIR

滤波器

HDL:19.83

HLS:18.86

XILINX:19.85

HDL:14.5 ns

HLS:10.3 ns

XILINX:15.4 ns

HDL:1.243

HLS:1.228

XILINX:1.137

HDL:122 ns

HLS:98 ns

XILINX:890 ns

HDL:2397LOC

HLS:36LOC

1 周柚, 杨森, 李大琳, 等. 基于现场可编程门电路的人脸检测识别加速平台[J]. 吉林大学学报: 工学版,2019, 49(6): 2051-2057.
Zhou You, Yang Sen, Li Da-lin, et al. Acceleration platform for face detection and recognition based on field programmable gate array[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(6): 2051-2057.
2 汤嘉武, 郑龙, 廖小飞, 等.面向高性能图计算的高效高层次综合方法[J]. 计算机研究与发展, 2021, 58(3): 467-478.
Tang Jia-wu, Zheng Long, Liao Xiao-fei, et al. Effective high-level synthesis for high-performance graph processing[J]. Journal of Computer Research and Development, 2021, 58(3): 467-478.
3 Schledt D, Kebschull U, Blume C. Developing a cluster-finding algorithm with Vitis HLS for the CBM-TRD[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers[J].Detectors and Associated Equipment, 2023, 1047: No.167797.
4 Inc Xilinx. Versal ACAP hardware, IP, and platform development methodology guide (UG 1387) [EB/OL].[2022-11-16]..
5 Inc Xilinx. Vivado design suite user guide: designing with IP (UG 896) [EB/OL]. [2022-11-02].
6 Lan H, Li D L, Wang K P, et al. A survey on performance optimization of high-level synthesis tools[J]. Journal of Computer Science and Technology, 2020, 35: 697-720.
7 Millón R, Frati E, Rucci E. A comparative study between HLS and HDL on SoC for image processing applications[J/OL].[2023-05-16].
8 Srilakshmi S, Madhumati G L. A comparative analysis of HDL and HLS for developing CNN accelerators[C]∥Third International Conference on Artificial Intelligence and Smart Energy (ICAIS), Coimbatore, India, 2023: 1060-1065.
9 张海龙, 张萌, 张亚州, 等. 基于临界采样多相滤波器组的宽带信号信道化器设计与实现[J]. 吉林大学学报: 工学版, 2023, 53(8): 2388-2394.
Zhang Hai-long, Zhang Meng, Zhang Ya-zhou, et al. Design and implementation of wideband signal channelizer based on critical sampling polyphase filter bank[J]. Journal of Jilin University (Engineering and Technology Edition),2023, 53(8): 2388-2394.
10 Nosov E, Marshalov D, Fedotov L, et al. Multifunctional digital backend for quasar VLBI network[J]. Journal of Instrumentation, 2021, 16(5): No.P05003.
11 Smith J P, Bailey J I, Tuthill J, et al. A high-throughput oversampled polyphase filter bank using vivado hls and pynq on a rfsoc[J]. IEEE Open Journal of Circuits and Systems, 2021, 2: 241-252.
12 Hossain K, Ahmed R, Haque A, et al. A review of digital fir filter design in communication systems[J]. International Journal of Science and Research (IJSR), 2021, 10(2): 1380-1391.
13 Zwagerman M D. High level synthesis, a use case comparison with hardware description language[D].Michigan: Grand Valley State University, 2015.
14 Inc Xilinx.2022.1 release highlights[DB/OL].[2023-05-16] ..
15 Inc Xilinx. What's new for the vitis software platform[DB/OL].[2023-05-16] .
[1] 张海龙,张萌,张亚州,王杰,冶鑫晨,王万琼,李嘉,杜旭,张婷. 基于临界采样多相滤波器组的宽带信号信道化[J]. 吉林大学学报(工学版), 2023, 53(8): 2388-2394.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!