吉林大学学报(工学版) ›› 2004, Vol. ›› Issue (2): 169-173.

• 论文 •    下一篇

基于均匀化理论的骨小梁损伤刚度

朱兴华1, 侯亚君2, 尚禹1   

  1. 1. 吉林大学, 机械科学与工程学院, 吉林, 长春, 130022;
    2. 沈阳工业学院, 理学院, 辽宁, 沈阳, 110168
  • 收稿日期:2003-09-25 出版日期:2004-04-01
  • 基金资助:
    教育部博士学科点专项基金资助项目(20020183026);国家自然科学基金资助项目(10372034);吉林省科技发展计划资助项目(20010527).

Investigation on trabecular bone rigidity based on homogenization theory

ZHU Xing-hua1, HOU Ya-jun2, SHANG Yu1   

  1. 1. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China;
    2. College of Science, Shenyang Institute of Technology, Shenyang110168, China
  • Received:2003-09-25 Online:2004-04-01

摘要: 用相对线密度ρ描述骨小梁上裂纹的分布;利用均匀化方法研究了微裂纹的密度、长度和方向对骨小梁刚度的影响。骨小梁的刚度与微裂纹的长度密切相关,当微裂纹长度增加时,与微裂纹垂直方向上的骨小梁刚度下降很快;骨小梁的刚度与微裂纹的密度密切相关,当微裂纹的密度增大时,3个方向上的刚度以相同的比率缓慢下降,以对与裂纹垂直方向的E影响最大;骨小梁的刚度与裂纹的方向也有密切关系。松质骨的力学性质与其微结构和骨小梁的力学性质有关;松质骨的损伤主要与骨小梁的损伤和损伤分布有关。

关键词: 骨小梁, 微裂纹, 弹性模量, 均匀化方法

Abstract: The homogenization theory was used to discuss the rigidity of the trabecular bone. The rigidity of the trabecular bone depended fundamentally on the length and the density of the microcracks. The rigidity in three directions decreased at the same rate as the density of the microcracks increases, which affectd the elastic modulus E in the direction perpendicular to microcrack most deeply.The extended direction of microcrack also affectd the rigidity of the trabecular bone. The mechanical characteristic of cancellous bone depended on the microstructure and the mechanical characteristic of the trabecular bone. The damage of cancellous bone mainly depended on the damage of trabecular bone and distribution of the microcracks on trabecular bone.

Key words: trabecular bone, microcrack, elastic modulus, homogenization method

中图分类号: 

  • Q66
[1] HOLLISTER S J. Application of homogenization theory to the study of trabecular bone mechanics[J]. J Biomechanics,1991,24(9):825-839.
[2] GIBSON L J.The mechanical behaviour of cancellous bone[J].J Biomech,1985,18(5):317-328.
[3] 树学锋,张宁,樊学军.松质骨表观密度和弹性模量间关系的均匀化理论模型[J].医用生物力学,1997,12(4):212-218.
[4] 樊学军.均匀化理论及其在生物力学中的应用[J].力学进展,1996,26(2):187-197.
[5] 刘书田,程耿东.复合材料应力分析的均匀化方法[J].力学学报,1997,29(3):306-313.
[6] 张宁,樊学军.利用松质骨理想化模型对骨小梁刚度的研究[J].力学学报,1997,29(6):701-710.
[7] GRANT Schaffner,GUO Xiang-dong,MATTHEW J,LORNA J Gibson.Modelling fatigue damage accumulation in two-dimensional voronoi honeycombs[J].International Journal of Mechanical Sciences,2000,42:645-656.
[8] GIBSON L J, ASHBY M F. Cellular solid: structure and properties[M].Oxford:Pergamon Press,1988.
[9] WENZEL T E,SCHAFFLER M B,FYHRIE D P.In vivo trabecular microcracks in human vertebral bone[J].Bone,1996,19(2):89-95.
[10] VASHISHTH D,KOONTZ J,QIU S J,LUNDIN-CANNON D,YENI Y N,SCHAFFLER M B,FYHRIE D P.In vivo diffuse damage in human vertebral trabecular bone[J].Bone,2000,26(2):147-152.
[11] BURR David B,TURNER Charles H,NAICK Pratap,FORWOOD Mark R.Does microdamage accumulation affect the mechanical properties of bone[J].Journal of Biomechanics,1998,31:337-345.
[1] 徐虹, 刘亚楠, 于婷, 谷诤巍, 李湘吉, 张志强. 双相钢DP780在循环加载-卸载过程中的非弹性回复行为及其微观机理[J]. 吉林大学学报(工学版), 2017, 47(1): 191-198.
[2] 赵宏伟, 董晓龙, 张霖, 胡晓利. 块体材料弹性模量的四点弯曲自动测试[J]. 吉林大学学报(工学版), 2016, 46(1): 140-145.
[3] 孟德建, 张立军, 方明霞, 余卓平. 面向制动踏板感觉的主缸动力学模型及其关键影响因素[J]. 吉林大学学报(工学版), 2015, 45(5): 1388-1394.
[4] 姜日花1,白爽1,戴跃2 ,赵梅生3. 瘢痕疙瘩的生物力学特性[J]. 吉林大学学报(工学版), 2011, 41(6): 1675-1677.
[5] 金满,江中浩,连建设 . 短纤维增强金属基复合材料弹性模量临界值计算预测[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 1-05.
[6] 金满,江中浩,连建设 . 短纤维增强金属基复合材料弹性模量临界值计算预测[J]. 吉林大学学报(工学版), 2006, 36(suppl.2): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!