吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (5): 1388-1394.doi: 10.13229/j.cnki.jdxbgxb201505002

• • 上一篇    下一篇

面向制动踏板感觉的主缸动力学模型及其关键影响因素

孟德建1, 2, 3, 张立军1, 2, 方明霞4, 余卓平1, 2   

  1. 1.同济大学 汽车学院,上海 201804;
    2.同济大学 智能型新能源汽车协同创新中心,上海 201804;
    3.同济大学 力学流动站,上海 200092;
    4.同济大学,航空航天与力学学院,上海 200092
  • 收稿日期:2013-12-15 出版日期:2015-09-01 发布日期:2015-09-01
  • 通讯作者: 张立军(1972-),男,教授,博士生导师.研究方向:汽车系统动力学,振动与噪声控制.E-mail:tjedu_zhanglijun@tongji.edu.cn
  • 作者简介:孟德建(1982-),男,助理教授,博士.研究方向:汽车系统动力学,振动与噪声控制.
  • 基金资助:
    中国博士后科学基金项目(2013M531208); 国家自然科学基金项目(51175380)

Master cylinder dynamic model for brake pedal feeling and its key factors

MENG De-jian1, 2, 3, ZHANG Li-jun1, 2, FANG Ming-xia4, YU Zhuo-ping1, 2   

  1. 1.School of Automotive Engineering,Tongji University,Shanghai 201804,China;
    2.Collaborative Innovation Center for Intelligent New Energy Vehicle,Tongji University,Shanghai 201804,China;
    3.Mechanics Post-doctoral Research Station,Tongji University,Shanghai 200092,China;
    4.School of Aerospace Engineering and Applied Mechanics,Tongji University,Shanghai 200092,China
  • Received:2013-12-15 Online:2015-09-01 Published:2015-09-01

摘要: 考虑回位弹簧的预紧力、系统摩擦力、阀口间隙以及制动液体积弹性模量的变化,建立了面向制动踏板感觉的制动主缸动力学模型。开展了不同推杆速度下的制动主缸特性试验,进而辨识了模型的关键参数。经过对比与分析发现,试验结果与仿真结果一致性较好。进而分析了影响制动踏板感觉的关键因素,结果表明:活塞内径、回位弹簧预紧力和刚度以及制动液气体含量对面向制动踏板感觉的制动主缸特性具有重要的影响。

关键词: 车辆工程, 制动主缸, 液压制动系统, 制动踏板感觉, 体积弹性模量

Abstract: A brake master cylinder dynamic model for brake pedal feeling is proposed, in which the return spring preload, system friction forces, valve port clearance and changes in the brake fluid bulk modulus are considered. Experiments on the characteristics of the brake master cylinder are carried out under the condition of different pushrod speed, and then the key parameters of model are identified. By analysis and comparison, it is found that the test results and the simulation results have a good consistency. Further, the key factors of the brake master cylinder for brake pedal feel are analyzed, and results show that the piston diameter, spring preload and stiffness, and the brake fluid gas content significantly influence the brake pedal feel and master cylinder performance.

Key words: vehicle engineering, brake master cylinder, hydraulic brake system, brake pedal feel, bulk modulus

中图分类号: 

  • U463.5
[1] Khan Y, Kulkarni P, Youceftoumi K. Modeling, experimentation and simulation of a brake apply system[J]. Journal of Dynamic Systems Measurement and Control, 1994, 116(1): 111-122.
[2] Gerdes J C, Hedrick J K. Brake system modeling for simulation and control[J]. Journal of Dynamic Systems Measurement and Control, 1999, 121(3): 496-503.
[3] 詹军. 基于ACC的制动系统模型研究[J]. 中国机械工程, 2005,16(5): 76-78. Zhan Jun. Research on model of brake system based on ACC system[J]. China Mechanical Engineering, 2005,16(5): 76-78.
[4] Fisher D K. Brake system component dynamic performance measurement and analysis[C]∥International Automobile Safety Conference,Detroit, Michigan, 1970.
[5] Yamada T, Sawada M. Development and implementation of simulation tool for vehicle brake system[C]∥SAE 2001 World Congress, Detroit, Michigan, 2001.
[6] 刘晓. 基于特性的制动系统动态建模与分析[D]. 长春:吉林大学汽车工程学院,2012. Liu Xiao. Dynamic modeling and analysis of the braking system based on its characteristics[D]. Changchun: College of Automotive Engineering, Jilin University, 2012.
[7] Fortina A, Velardocchia M, Sorniotti A. Braking system components modelling[C]∥21st Annual Brake Colloquium & Exhibition, Hollywood, Florida, 2003.
[8] 贺平. 基于Modelica的液压制动系统多领域建模与仿真[D]. 武汉:华中科技大学机械科学与工程学院,2011. He Ping. The multi-domain modeling and simulation of hydraulic brake system based on modelica[D]. Wuhan: School of Mechanical Science and Engineering, Huazhong University of Science & Technology, 2011.
[9] Day A, Ho H, Hussain K, et al. Brake system simulation to predict brake pedal feel in a passenger car[C]∥SAE 2009 Brake Colloquium and Exhibition, Tampa, Florida, 2009.
[10] 方泳龙,胥向欣,刘玺. 制动主缸与踏板行程专家系统知识库的建立[J]. 江苏大学学报:自然科学版, 2007,28(6): 477-481. Fang Yong-long, Xu Xiang-xin, Liu Xi. Expert system knowledge base construction of brakemaster cylinder stroke and brake pedal stroke[J]. Journal of Jiangsu University (Natural Science Edition), 2007,28(6): 477-481.
[11] 王兴东,胡于进,李成刚,等. 气液混合型制动系的执行机构建模试验和仿真[J]. 汽车工程, 2002,24(6): 516-519. Wang Xing-dong, Hu Yu-jin, Li Cheng-gang, et al. Modeling, experiment and simulation of a pneumatic-hydraulic brake system[J]. Automotive Engineering, 2002,24(6): 516-519.
[12] 朱冬. 液压系统低压管路瞬态过程研究[D]. 哈尔滨:哈尔滨工业大学机电工程学院,2006. Zhu Dong. The research of fluid transients in low pressure hydraulic pipeline[D]. Harbin: Mechatronic Engineering, Harbin Institute of Technology, 2006.
[13] 冯斌,龚国芳,杨华勇. 液压油弹性模量提高方法与试验[J].农业机械学报,2010,41(3):219-222. Feng Bin, Gong Guo-fang, Yang Hua-yong. Method and experiment for increasing effective fluid bulk modulus in hydraulic systems[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010,41(3):219-222.
[14] Goto Y, Yasuda A, Ishida S. Brake Master cylinder for secure brake feel and improved system failure performance[C]∥21st Annual Brake Colloquium & Exhibition, Hollywood, Florida, 2003.
[15] Rajesh A T, Badal B, Pol S. Co-relating subjective and objective brake performance: a case study[C]∥24th Annual Brake Colloquium and Exhibition, Grapevine, Texas, 2006.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828 -834 .
[2] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685 -1693 .