吉林大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (02): 483-488.

• 论文 • 上一篇    下一篇

平行四杆联动式管道机器人弯管过渡阶段的速度控制

李庆凯, 唐德威, 姜生元, 邓宗全   

  1. 哈尔滨工业大学 机器人技术与系统国家重点实验室, 哈尔滨 150001
  • 收稿日期:2010-12-20 出版日期:2012-03-01 发布日期:2012-03-01
  • 作者简介:李庆凯(1983-),男,博士研究生.研究方向:特种机器人.E-mail:liqingkai1983@163.com
  • 基金资助:

    "863"国家高技术研究发展计划项目(2006AA04Z236);机器人技术与系统国家重点实验室自主研究课题(SKLRS200802C);高等学校学科创新引智计划项目(B07018).

Velocity control of the parallel four-bar linkage-type pipeline robot in transition phase of elbow

LI Qing-kai, TANG De-wei, JIANG Sheng-yuan, DENG Zong-quan   

  1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
  • Received:2010-12-20 Online:2012-03-01 Published:2012-03-01

摘要: 为提高平行四杆联动式管道机器人弯管过渡阶段的通过能力,提出一种基于机器人过弯偏角变化的速度控制模型。通过对机器人弯管过渡阶段的运行状态的分析,建立了机器人在该阶段运行的位姿模型,求解该位姿模型可得到机器人各驱动轮的轮心以及驱动轮与管壁接触点的位置坐标。以建立的位姿模型为基础,结合无干涉条件下的驱动轮运行速度与驱动转速之间的关系,得到各驱动轮驱动转速基于偏角变化的速比关系,即速度控制模型。对所提出的基于偏角变化的速度控制模型进行仿真验证,仿真结果与理论计算基本一致,验证了该控制模型的正确性。

关键词: 管道机器人, 弯管, 速度控制, 位姿模型

Abstract: In order to improve the passing capacity of the parallel four-bar linkage-type pipeline robot in the transition phase of elbow, a velocity control model based on the variety of deflexion angle when the robot passes in the elbow is proposed. By analyzing the movement of the robot in the transition phase, a pose model of the robot is established. Using this model the coordinates of the wheel centers and the contact points between the wheels and the pipeline surface can be calculated. Based on the pose model of the robot, and the relationship between the wheel speed and the driving angular velocity under the condition of no interference, the ratio relationship of the driving angular velocities of the wheels is obtained, that is the velocity control model. The proposed velocity control model is validated by simulation analysis. The simulation result is consistent with the theoretical calculation.

Key words: pipeline robot, elbow, velocity control, pose model

中图分类号: 

  • TP24
[1] 邓宗全,陈军,姜生元,等.六独立轮驱动管内检测牵引机器人[J].机械工程学报,2005,41(9):67-72. Deng Zong-quan, Chen Jun, Jiang Sheng-yuan, et al. Traction robot driven by six independent wheels for inspection inside pipeline[J]. Chinese Journal of Mechanical Engineering, 2005, 41(9): 67-72.

[2] Chen Jun, Deng Zong-quan, Jiang Sheng-yuan. Study of locomotion control characteristics for six wheels driven in-pipe robot//Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics,Shenyang, China, 2004.

[3] 唐德威,梁涛,姜生元,等.机械自适应管道机器人的机构原理与仿真分析[J].机器人,2007,29(6):457-461. Tang De-wei, Liang Tao, Jiang Sheng-yuan, et al. Mechanism and simulation analysis of mechanical self-adaptive pipe-robot[J]. Robot, 2007, 29(6): 457-461.

[4] 唐德威,李庆凯,梁涛,等.三轴差动式管道机器人机械自适应驱动技术[J].机械工程学报,2008,44(9):128-133. Tang De-wei,Li Qing-kai,Liang Tao,et al. Mechanical self-adaptive drive technology of triaxial differential pipe-robot[J]. Chinese Journal of Mechanical Engineering, 2008, 44(9): 128-133.

[5] 张云伟. 煤气管道检测机器人系统及其运动控制技术研究. 上海:上海交通大学电子信息与电气工程学院,2007. Zhang Yun-wei. Research on gas pipeline inspection robot and its motion control. Shanghai: School of Electronics & Information Technology & Electric Engineering, Shanghai Jiaotong University, 2007.

[6] Zhang Yun-wei, Yan Guo-zheng. In-pipe inspection robot with active pipe-diameter adaptability and automatic tractive force adjusting[J]. Mechanism and Machine Theory,2007, 42(12): 1618-1631.

[7] Choi H R, Ryew S M. Robotic system with active steering capability for internal inspection of urban gas pipelines[J]. Mechatronics,2002, 16(12): 713-736.

[8] Roh S-G, Choi H R. Differential-drive in-pipe robot for moving inside urban gas pipeline[J]. IEEE Transactions on Robotics,2005, 21(1):1-17.

[9] Roh Se-Gon, Kim Do Wan, Lee Jung-Sub, et al. In-pipe robot based on selective drive mechanism[J]. Journal of Control, Automation and Systems,2009, 7(1): 105-112.

[10] 张云伟,颜国正,丁国清,等.煤气管道机器人管径适应调整机构分析[J].上海交通大学学报,2005,39(6):950-954. Zhang Yun-wei, Yan Guo-zheng, Ding Guo-qing, et al. Pipe-diameter adapting and adjusting mechanism of gas pipeline inspection robot[J]. Journal of Shanghai Jiaotong University, 2005, 39(6): 950-954.
[1] 郑宏宇,王琳琳,赵伟强,陈宇超. 基于电控制动系统的客车制动力分配控制策略[J]. 吉林大学学报(工学版), 2015, 45(2): 347-351.
[2] 黄家才, 施昕昕, 李宏胜, 徐庆宏, 石要武. 永磁同步电机调速系统的分数阶积分滑模控制[J]. 吉林大学学报(工学版), 2014, 44(6): 1736-1742.
[3] 王帅夫,刘景林. 基于大脑情感学习模型的步进电机控制系统[J]. 吉林大学学报(工学版), 2014, 44(3): 765-770.
[4] 管欣, 崔文锋, 贾鑫. 车辆纵向速度分相控制[J]. 吉林大学学报(工学版), 2013, 43(02): 273-277.
[5] 李显生, 任园园, 席建锋, 左淑霞. 非强制性控速设施下的驾驶员速度控制模型[J]. 吉林大学学报(工学版), 2010, 40(增刊): 169-0173.
[6] 杨斌久, 姜生元, 耿德旭, 庞绍平. 三轴差速器的设计及应用[J]. 吉林大学学报(工学版), 2002, (4): 70-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!