吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1736-1742.doi: 10.13229/j.cnki.jdxbgxb201406031

• • 上一篇    下一篇

永磁同步电机调速系统的分数阶积分滑模控制

黄家才1, 施昕昕1, 李宏胜1, 徐庆宏1, 石要武2   

  1. 1.南京工程学院 自动化学院,南京 211167;
    2.吉林大学 通信工程学院,长春 130022
  • 收稿日期:2013-07-01 出版日期:2014-11-01 发布日期:2014-11-01
  • 作者简介:黄家才(1977-),男,副教授,博士.研究方向:运动控制,分数阶控制.E-mail:
  • 基金资助:
    国家自然科学基金项目(61104085); 江苏省自然科学基金项目(BK20130744); 江苏省教育厅自然科学基金项目(13KJB510011); 江苏政府留学奖学金资助项目(JS-2012-051)

Speed control of PMSM using fractural order integral sliding mode controller

HUANG Jia-cai1, SHI Xin-xin1, LI Hong-sheng1, XU Qing-hong1, SHI Yao-wu2   

  1. 1.School of Automation, Nanjing Institute of Technology, Nanjing 211167, China;
    2.College of Communication Engineering, Jilin University, Changchun 130022, China
  • Received:2013-07-01 Online:2014-11-01 Published:2014-11-01

摘要: 为了提高永磁同步电机(PMSM)调速系统对负载扰动及参数变化的鲁棒性,采用速度误差的分数阶微积分,设计了非线性积分滑模面,并提出一种基于分数阶积分滑模控制算法(FOISMC)的PMSM速度控制系统。通过Lyapunov定理证明了所设计的控制器的稳定性,并对该控制器进行了性能分析。理论分析和数值仿真结果表明:所提方法比整数阶积分滑模控制以及常规PI控制具有更好的动态性能和抗扰动能力,以及更高的速度跟随精度。

关键词: 自动控制技术, 永磁同步电机, 分数阶微积分, 积分滑模控制, 速度控制

Abstract: In order to improve the robustness of load disturbance and parameter uncertainties of the Permanent Magnet Synchronous Motor (PMSM) speed control system, first, a nonlinear integral sliding surface was designed based on the fractural order calculus of the speed error. Then, a robust Fractional Order Integral Sliding Mode Control (FOISMC) algorithm was proposed for the PMSM speed control system. The stability of the proposed FOISMC method was proved by the Lyapunov stability theory, and the performance of the proposed controller was analyzed. Analysis and numerical simulation results show that the proposed method has better dynamic performance, robustness and speed tracking accuracy than the conventional integer order Integral Sliding Mode Control (ISMC) method and PI control method.

Key words: automatic control technology, permanent magnet synchronous motor, fractional calculus, integral sliding mode control, speed control

中图分类号: 

  • TP271.4
[1] Slemon G R. Electrical machines for variable-frequency drives[J]. Proceeding of IEEE, 1994, 82(8): 1123-1139.
[2] Rachid E, Mohand O. Nonlinear predictive controller for a permanent magnet synchronous motor drive[J]. Mathematics and Computers in Simulation, 2010, 81(2): 394-406.
[3] Zhou J, Wang Y. Real-time nonlinear adaptive back stepping speed control for a PM synchronous motor[J]. Control Engineering Practice, 2005, 13(10): 1259-1269.
[4] Hsien T L, Sun Y Y, Tsai M C. H ∞ control for a sensorless permanent magnet synchronous drive[J]. IEE Proceedings Electric Power Applications, 1997, 144(3): 173-181.
[5] Mezouar A, Fellah M K, Hadjeri S. Adaptive sliding mode observer for induction motor using two-time-scale approach[J]. Electric Power Systems Research, 2007,77(5):604-618.
[6] Chern T L, Wu Y C. Design of integral variable structure controller and application to electro hydraulic velocity servo systems[J]. IEE Proceedings D. IET, 1991, 138(5): 439-444.
[7] Bailk I C, Kim K H, Youn M J. Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique[J]. IEEE Transactions on Control System Technology, 2000,8(1):47-54.
[8] 童克文, 张兴, 张昱, 等. 基于新型趋近率的永磁同步电机滑模变结构控制[J]. 中国电机工程学报,2008, 28(21): 102-106. Dong Ke-wen, Zhang Xing, Zhang Yu, et al. Sliding mode variable structure control of a permanent magnet synchronous machine based on a novel reaching law[J]. Proceedings of the CSEE, 2008,28(21): 102-106.
[9] Podlubny I. Fractional-order systems and PIλDμ-controllers[J]. IEEE Transactions on Automatic Control, 1999, 44(1): 208-214.
[10] Li H S, Luo Y, Chen Y Q. A Fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments[J]. IEEE Transactions on Control Systems Technology, 2010,18(2):516-520.
[11] Li Y,Chen Y Q,Podlubny I. Stability of fractional order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability[J].Computers Mathematics with Applications,2010,59(5):1810-1821.
[12] Chen Y Q, Petras I, Xue D Y. Fractional order control-A tutorial[C]∥American Control Conference, 2009:1397-1411.
[13] Oldham K B, Spanier J. The Fractional Calculus[M]. New York:Academic Press, 1974.
[14] Podlubny I. Fractional Differential Equations[M]. San Diego:Academic Press,1999.
[15] 张碧陶, 皮佑国. 永磁同步电机伺服系统模糊分数阶滑模控制[J]. 控制与决策,2012, 27(12): 1776-1780. Zhang Bi-tao, Pi You-guo. Fractional order fuzzy sliding mode control for permanent magnet synchronous motor servo drive[J]. Control and Decision, 2012, 27(12): 1776- 1780.
[16] Delavari H, Ghaderi R, Ranjbar A, et al. Fuzzy fractional order sliding mode controller for nonlinear systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(4):963-978.
[17] Lin F J. Real-time IP position controller design with torque feedforward control for PM synchronous motor[J]. IEEE Transactions on Industrial Electronics, 1997,44(3):398-407.
[18] 王礼鹏,张化光,刘秀翀. 低速PMSM无速度传感器调速系统积分滑模控制[J]. 电机与控制学报, 2012,16(2): 20-24. Wang Li-peng, Zhang Hua-guang, Liu Xiu-chong. Sensorless of integral sliding mode controlled PMSM at low speeds[J]. Electric Machines and Control, 2012,16(2): 20-24.
[19] 李鹏, 郑志强. 非线性积分滑模控制方法[J]. 控制理论与应用,2011,28(3): 421-426. Li Peng, Zheng Zhi-qiang. Sliding mode control approach with nonlinear integrator[J]. Control Theory & Applications, 2011,28(3):421-426.
[20] 陈振, 耿洁, 刘向东. 基于积分时变滑模控制的永磁同步电机调速系统[J]. 电工技术学报,2011,26(6): 56-61. Chen Zhen, Geng Jie, Liu Xiang-dong. An integral and exponential time-varying sliding mode control of permanent magnet synchronous motors[J]. Transactions of China Electrotechnical Society, 2011,26(6): 56-61.
[21] Ahmed E, EI-Sayed A M A, EI-Saka H A. Equilibrium points, stability and numerical solutions of fractional order predator-prey and rabies models[J]. Journal of Mathematical Analysis and Applications,2007,325(22):542-553.
[22] 史宏宇, 冯勇, 张袅娜. 感应电动机全局高阶滑模观测器[J]. 吉林大学学报:工学版,2013,43(3): 688-694. Shi Hong-yu, Feng Yong, Zhang Niao-na. Global high-order sliding mode observer for induction motor[J]. Journal of Jilin University (Engineering and Technology Edition), 2013,43(3): 688-694.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[7] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[8] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[9] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[10] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[11] 贾一帆, 初亮, 许楠, 徐哲. 车用双电源开绕组电机驱动系统绕组模式切换及电流控制策略[J]. 吉林大学学报(工学版), 2018, 48(1): 20-29.
[12] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[13] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[14] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[15] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!