›› 2012, Vol. ›› Issue (06): 1569-1575.

• 论文 • 上一篇    下一篇

靶式光纤光栅流速传感器在裂隙水模型试验中的应用

王正方1, 王静1, 隋青美1, 李术才2, 张庆松2, 张霄2   

  1. 1. 山东大学 控制科学与工程学院, 济南 250061;
    2. 山东大学 岩土与结构研究中心, 济南 250061
  • 收稿日期:2011-07-30 出版日期:2012-11-01
  • 通讯作者: 隋青美(1963-),女,教授,博士.研究方向:新型检测理论及应用.E-mail:qmsui@sdu.edu.cn E-mail:qmsui@sdu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61174163).

Application of target-type FBG flow velocity sensor in fracture water model test

WANG Zheng-fang1, WANG Jing1, SUI Qing-mei1, LI Shu-cai2, ZHANG Qing-song2, ZHANG Xiao2   

  1. 1. College of Control Science and Engineering, Shandong University, Jinan 250061, China;
    2. Geotechnical Engineering Center, Shandong University, Jinan 250061, China
  • Received:2011-07-30 Online:2012-11-01

摘要: 结合等强度悬臂梁和光纤Bragg光栅(FBG)设计了靶式FBG流速传感器,用于在线测量管道及裂隙的流场流速。传感器将流体中靶片的受力转化为该流速下对应FBG中心波长的漂移,并自动实现温度补偿。采用FLUENT6.3对被测裂隙及管道流场进行有限元仿真,确定裂隙中靶片受力特性及相同受力条件下的等效管道内径,并求得过流断面5 mm×2000 mm的裂隙中传感器的灵敏系数为8.71×10-4 s2/m2。在管道系统中进行传感器标定实验,传感器在0~1.20 m/s范围内,最大误差为0.02 m/s。将该传感器应用于裂隙水模型引流试验,实验结果表明,关键点流速随着进水阀门开度逐渐增大而提高。打开引流管道阀门,引流管道布设处后方各点流速降低,且同一断面流速变化趋势保持一致。

关键词: 光电子学与激光技术, 光纤光栅, 流速传感器, 模型试验, 裂隙水

Abstract: Combining equal strength cantilever with Fiber Bragg Grating (FBG), a target-type FBG flow velocity sensor is developed to monitor the pipeline and the fracture flow velocity on-line. The force produced by flow works on the special shape target, then the level and cantilever structure transform the force into the wavelength shift of the FBG and the dual FBG structure is adopted to eliminate temperature effect. In order to determine the target force characteristics in the fracture and the equivalent pipeline diameter under equal force, finite element simulation is carried out using FLUENT6.3. Simulation results show that the velocity sensitivity of the sensor is 8.71?10-4 s2/m2 in the fracture at the flow section of 5 mm?2000 mm. The pipeline calibration experiments indicate that, in the measuring range of 0 m/s~1.20 m/s, the maximum error of the sensor is 0.02 m/s. The sensor is used in the drainage experiment of simple fracture water model. The results indicate the velocity increases when the inlet valve is enlarged. After the valve is turned on, the velocity in the rear drainage pipeline decreases. The trend of velocity change at the same section is in agreement with each other.

Key words: optoelectronics and laser technology, fiber Bragg grating, flow velocity sensor, model test, fracture water

中图分类号: 

  • TN253
[1] Lu Ping, Chen Qi-ying. Fiber bragg grating sensor for simultaneous measurement of flow rate and direction[J]. Meas Sci Technol,2008,19(12):1-8.
[2] Chen Jin-jie, Liu Bo, Zhang Hao. Review of fiber bragg grating sensor technology[J]. Frontiers of Optoelectronics in China,2011,4(2):204-212.
[3] 钱颖, 张鹰, 于永森,等. 基于特殊悬臂梁的光纤Bragg光栅应力传感器[J]. 吉林大学学报:工学版,2006, 36(5):757-760. Qian Ying, Zhang Ying, Yu Yong-sen,et al. Novel stress sensor of FBG on unique cantilever[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(5):757-760.
[4] 张向林, 陶果, 刘新茹. 光纤光栅温度自动补偿的位移调谐[J].吉林大学学报:理学版, 2006,44(4):634-636. Zhang Xiang-lin, Tao Guo, Liu Xin-ru. Displacement tuning of fiber bragg grating with temperature compensation[J]. Journal of Jilin University(Science edition),2006,44(4):634-636.
[5] Wei P, Pickrell G R, Huang Z Y,et al. Self-compensating fiber optic flow sensor system and its field applications[J]. Applied Optics, 2004,43(8):1752-1760.
[6] Cubukcu A S, Urban G A. Simulation and fabrication of a 2D-flow sensor for simultaneous fluid characterization[J]. Procedia Chemistry, 2009,1(1): 887-890.
[7] 禹大宽,乔学光,贾振安,等. 一种测量温度和流速的光纤光栅传感器[J]. 应用光学,2006,27(3):228-231. Yu Da-kuan, Qiao Xue-guang, Jia Zhen-an, et al. Fiber Bragg grating sensor for detecting temperature and flow-velocity[J]. Journal of Applied Optics,2006,27(3): 228-231.
[8] 陈建军,张伟刚,涂勤昌,等. 光纤光栅的高灵敏度流速传感器[J]. 光学学报,2006,26(8):1136-1139. Chen Jian-jun, Zhang Wei-gang, Tu Qin-chang, et al. High sensitivity flow velocity sensor based on fiber grating[J]. Acta Optica Sinica, 2006,26(8):1136-1139.
[9] 杨淑连,申晋,李田泽. 基于双光纤布拉格光栅的流速传感器[J]. 半导体光电,2009,30(5):759-762. Yang Shu-lian, Shen Jin, Li Tian-ze. Flow velocity sensor based on double fiber Bragg gratings[J]. Semiconductor Optoelectronics,2009, 30(5):759-762.
[10] 蔡守允,杨大明,朱其俊. 模型试验流速测量仪的分析研究[J]. 水资源与水利工程学报,2007,18(3):36-38. Cai Shou-yun, Yang Da-ming, Zhu Qi-jun. Study of velocity instruments by the model test[J]. Journal of Water Sources & Water Engineering,2007,18(3):36-38.
[11] 蔡守允, 张晓红. 水利工程模型试验量测技术的发展[J]. 水资源与水工程学报,2009,20(1):78-80. Cai Shou-yun, Zhang Xiao-hong. Development of the measuring technology in the model test of hydraulic engineering[J]. Journal of Water Resources& Water Engineering, 2009, 20(1):78-80.
[12] 刘钦东,杨达. ngg超声波流速测量仪精度的提高[J]. 制造业自动化, 2011(6):162-163. Liu Qin-dong, Yang Da. Ultrasonic flow meter accuracy improvement[J]. Manufacturing Automation,2011(6):162-163.
[13] 吴俊,丁甡奇,陈伟民. 基于光学互相关发的开放流场流速测量[J].仪表技术与传感器, 2009(9):68-70. Wu Jun, Ding Sheng-qi, Chen Wei-min. Flow velocity measurement technology for open fluid field based on optical cross correlation method[J]. Instrument Technique and Sensor, 2009(9):68-70.
[14] 吴俊,丁甡奇,余葵,等.光电非接触式表面流速测量[J]. 光学精密工程,2010,18(2):349-356. Wu Jun, Ding Sheng-qi, Yu Kui, et al. Non-contact measurement of surface flow velocity using photoelectric method[J]. Optics and Precision Engineering,2010,18(2):349-356.
[15] 王静,王正方,隋青美,等. FBG应变传感系统在巷道涌水模型试验中的研究[J]. 光电子·激光,2010,21(12):1768-1772. Wang Jing, Wang Zheng-fang, Sui Qing-mei, et al. Research of FBG strain system in laneway water inrush model test[J]. Journal of Optoelectronicso·Laser,2010, 21(12):1768-1772.
[16] 胡玉瑞,唐源宏,李川. 光纤Bragg光栅流量传感器[J].传感技术学报,2010,23(4):471-474. Hu Yu-rui, Tang Yuan-hong, Li Chuan. Fiber Bragg grating flow sensor[J]. Chinese Journal Of Sensors And Actuators,2010,23(4):471-474.
[17] 赵存友. 工程流体力学[M]. 哈尔滨:哈尔滨工业大学出版社,2010.
[18] Zhao Yong, Chen Kun, Yang Jian. Novel target type flowmeter based on a differential fiber Bragg grating sensor[J]. Measurement,2005,38(3):230-235.
[19] 张有天. 岩石水力学工程[M].北京:中国水利水电出版社,2005.
[1] 古海东,罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报(工学版), 2018, 48(6): 1712-1724.
[2] 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[3] 闫光, 庄炜, 刘锋, 祝连庆. 具有增敏效果的光纤光栅应变传感器的预紧封装及传感特性[J]. 吉林大学学报(工学版), 2016, 46(5): 1739-1745.
[4] 王少杰, 徐赵东, 李舒, 王凯洋,Dyke Shirley J. 基于应变监测的连续梁支承差异沉降识别[J]. 吉林大学学报(工学版), 2016, 46(4): 1090-1096.
[5] 胡玉明, 黄音, 古海东. 排桩支护结构内力与变形三维有限元数值分析[J]. 吉林大学学报(工学版), 2016, 46(2): 445-450.
[6] 张彦玲, 孙瞳, 侯忠明, 李运生. 隔板式钢-混凝土曲线组合梁弯扭性能[J]. 吉林大学学报(工学版), 2015, 45(4): 1107-1114.
[7] 苏迎社,杨媛媛. 疏排桩支护结构中土拱荷载传递比分析[J]. 吉林大学学报(工学版), 2015, 45(2): 400-405.
[8] 陈晨, 党敬民, 黄渐强, 王一丁. 高稳定、强鲁棒性DFB激光器温度控制系统[J]. 吉林大学学报(工学版), 2013, 43(04): 1004-1010.
[9] 李旭, 何飞, 陈波. 软X射线波段透射光栅衍射效率检测系统[J]. 吉林大学学报(工学版), 2013, 43(04): 1011-1016.
[10] 常玉春, 余昭杰, 李靖, 曹令今, 李强, 杜国同. 基于建立-向下偏转过程11-bit 1-MS/s逐次逼近型模数转换器的设计[J]. 吉林大学学报(工学版), 2013, 43(02): 480-484.
[11] 赵静荣, 米阳, 张淑梅, 周劲. 人眼安全激光测距系统误差分析[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 410-414.
[12] 刘敏时, 王晓曼, 景文博. 双波门自适应阈值法对光束质量M2因子 测量精度的影响[J]. , 2012, 42(04): 1066-1070.
[13] 戴兵, 袁银男, 梅德清, 江俊康, 黄春妍. 多峰分布的微粒粒度衍射测量方法的改进[J]. 吉林大学学报(工学版), 2012, 42(01): 245-249.
[14] 胡贵军, 李晓光, 张鹏. Er3+/Yb3+共掺双包层光纤放大器的增益特性[J]. 吉林大学学报(工学版), 2012, 42(01): 240-244.
[15] 陈晨,黄渐强,吕默,党敬民,王一丁. 高精度纳秒级红外量子级联激光器驱动电源[J]. 吉林大学学报(工学版), 2011, 41(6): 1738-1742.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!