吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (4): 1114-1123.doi: 10.13229/j.cnki.jdxbgxb20170216

• • 上一篇    下一篇

立式混流泵装置压力脉动的模型试验分析

谢传流1, 汤方平1, 孙丹丹2, 张文鹏1, 夏烨1, 段小汇1   

  1. 1.扬州大学 水利与能源动力工程学院,江苏 扬州 225009;
    2.徐州市水利建筑设计研究院,江苏 徐州 221000
  • 收稿日期:2017-03-09 出版日期:2018-07-01 发布日期:2018-07-01
  • 通讯作者: 汤方平(1964-),男,教授,博士生导师.研究方向:流体机械设计,复杂工程系统科学优化设计,泵站自动化.E-mail:tangfp@yzu.edu.cn
  • 作者简介:谢传流(1988-),男,博士研究生.研究方向:双向轴流泵叶轮的优化设计.E-mail:m18352764807@163.com
  • 基金资助:
    国家自然科学基金项目(51376155,51609210); 中国博士后科学基金项目(2016M591932); 江苏高校优势学科建设工程项目(PAPD); 江苏省科研创新计划项目(KYZZ16_0492).

Model experimental analysis of pressure pulsation in vertical mixed-flow pump system

XIE Chuan-liu1, TANG Fang-ping1, SUN Dan-dan2, ZHANG Wen-peng1, XIA Ye1, DUAN Xiao-hui1   

  1. 1.School of Hydraulic Energy and Power Engineering, Yangzhou 225009, China;
    2.Xuzhou Water Conservancy Architectural Design & Research Institute, Xuzhou 221000, China;
  • Received:2017-03-09 Online:2018-07-01 Published:2018-07-01

摘要: 为研究立式混流泵装置内部压力脉动特性,通过模型试验的方法,对某混流泵装置不同叶轮叶片安放角(-2°、0°、2°)下叶轮进口和导叶出口的压力脉动进行采集,通过傅里叶变换后比较分析得出:混流泵装置叶轮进口和导叶出口压力脉动峰峰值均具有一定的规律性,不同叶片安放角下叶轮进口压力脉动峰峰值均大于导叶出口,小流量区域表现得更为明显;建立了泵装置稳定性微观与宏观间的联系,得出高效区附近可以通过压力脉动来反映机组波动性;叶轮进口压力脉动受叶片数的影响,主要以叶频为主,导叶出口压力脉动在1倍转频处幅值最大,受导叶片数影响不大;混流泵装置最优运行区域为最优扬程的0.75~1.15倍区域,运行扬程超出这个范围,压力脉动峰峰值明显增大。

关键词: 机械设计, 立式混流泵装置, 模型试验, 压力脉动相对幅值, 峰峰值, 频谱

Abstract: In order to study the internal pressure pulsation characteristics of vertical mixed-flow pump, by model test, the impeller inlet and vane outlet pressure pulsations were collected with different impeller blade placement angles of -2°, 0° and 2°. By Fourier transformation we found that the peak values of the pressure pulsation of the impeller inlet and vane outlet have certain regularity. With different blade placement angles, the peak value of the pressure pulsation of the impeller inlet is always larger than that of vane outlet, especially in small flow area. The micro and macro stability relationship of the pump is established by comparing the peak value of the pressure pulsation with the head and shaft power variance, and the stability of the pump can be obtained from the pressure pulsation in the vicinity of the high efficiency area. However, both in large and small flow areas, the pressure pulsation is no longer able to reflect the stability of the pump. By analyzing the frequency domain map, we can get four conclusions. First, the impeller inlet is affected by the number of blades, mainly by blade frequency. Second, the vane outlet is less affected by the number of vanes. Third, the amplitude of pressure pulsation of vane outlet approaches maximum at one times of the frequency. Last, the pulsation frequency is smaller under the optimal working point of each blade. Under each blade angle of the pump efficient area, the peak value of the pulsation of the impeller inlet and vane outlet reaches the minimum. When under 1.15 times of the optimum flow rate, the peak value reaches maximum. The impeller inlet is about 1.24 times of the peak value in the optimal working condition, while, the vane outlet maximum is about 1.57 times. The best run area of the mixed-flow pump is 0.75 to 1.15 times of the optimal head. The peak value of pressure pulsation is obviously increased when the running head is out of this range.

Key words: mechanical design, vertical mixed-flow pump system, model test, pressure pulsation relative amplitude, peak-peak value, frequency domain diagram

中图分类号: 

  • TH313
[1] 刘超. 水泵及水泵站[M]. 北京: 科学技术文献出版社, 2003.
[2] 姚志峰,王福军,肖若福,等. 离心泵压力脉动测试关键问题分析[J]. 排灌机械工程学报,2010, 28(3): 219-223.
Yao Zhi-feng,Wang Fu-jun,Xiao Ruo-fu,et al.Key issues in pressure fluctuation experiments for centrifugal pumps[J].Journal of Drainage and Irrigation Machinery Engineering,2010,28(3):219-223.
[3] 赵斌娟,袁寿其,陈汇龙. 基于滑移网格研究双流道泵内非定常流动特性[J]. 农业工程学报, 2009, 25(6):115-119.
Zhao Bin-juan, Yuan Shou-qi, Chen Hui-long.Unsteady flow characteristics in double-channel pumps based on sliding mesh[J]. Transactions of the CSAE, 2009, 25(6):115-119.
[4] Yang J, Yuan S, Yuan J, et al.Numerical and experimental study on flow-induced noise at blade-passing frequency in centrifugal pumps[J]. Chinese Journal of Mechanical Engineering, 2014, 27(3): 606-614.
[5] 司乔瑞. 离心泵低噪声水力设计及动静干涉机理研究研究[D]. 镇江:江苏大学水利与能源动力工程学院,2014.
Si Qiao-rui.Investigation on hydraulic design of centrifugal pumps with low noise and mechanism of rotor-stator interaction[D]. Zhenjiang: School of Hydraulic Energy and Power Engineering, Jiangsu University, 2014.
[6] 王家斌,陈佳,袁寿其, 等. 双吸双蜗壳离心泵隔舌处的压力脉动特性[J]. 排灌机械工程学报,2016,34(4):283-289.
Wang Jia-bin, Chen Jia,Yuan Shou-qi, et al.Pressure fluctuation near double volute tongue for double-suction centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(4): 283-289.
[7] 李万,钱忠东,郜元勇. 4 种湍流模型对混流式水轮机压力脉动模拟的比较[J]. 武汉大学学报:工学版, 2013,46(2):174-179,251.
Li Wan, Qian Zhong-dong, Gao Yuan-yong.Comparison of pressure oscillation characteristics in a francis hydraulic turbine with four different turbulence model[J]. Engineering Journal of Wuhan University, 2013,46(2):174-179,251.
[8] 钱忠东,陆杰,郭志伟,等.水泵水轮机在水轮机工况下压力脉动特性[J]. 排灌机械工程学报,2016,34(8):34-38.
Qian Zhong-dong,Lu Jie,Guo Zhi-wei,et al.Characteristics of pressure fluctuation in pump-turbine under turbine mode[J].Journal of Drainage and Irrigation Machinery Engineering,2016,34(8):34-38.
[9] Arndt N, Acosta A J, Brennen C E, et al.Rotor-stator interaction in a diffuser pump[J]. Journal of Turbomachinery,1989,111(3):213-221.
[10] Masahiro M,Hideaki M,Isamu U,et al.Unsteady head-flow characteristic generation mechanism of a low specific speed mixed flow pump[J]. Journal of Thermal Science,2005,15(2):115-120,144.
[11] 胡芳芳,陈涛,吴大转,等. 导叶式混流泵振动噪声的试验研究[J]. 工程热物理学报, 2013, 34(5):874-877.
Hu Fang-fang,Chen Tao,Wu Da-zhuan,et al.Experimental study on flow-induced vibration and noise of the mixed flow pump with guide vane[J].Journal of Engineering Thermophysics,2013,34(5):874-877.
[12] 田锋社. 水轮机压力脉动测试方法的研究与讨论[J]. 噪声与振动控制, 2006,26(4):111-116.
Tian Feng-she.Study on the testing method of pressure fluctuation of the water turbine[J]. Noise and Vibration Control, 2006, 26(4):111-116.
[13] 胡全友,刘小兵,赵琴,等. 蜗壳式混流泵压力脉动特性研究[J]. 人民长江, 2016, 47(10):76-80.
Hu Quan-you, Liu Xiao-bing, Zhao Qin, et al.Study on pressure fluctuation characteristics of interior flow in mixed-flow pump with volute[J]. Yangtze River, 2016, 47(10):76-80.
[14] 翟杰, 祝宝山, 李凯,等. 低比转数混流泵导叶内部压力脉动特性研究[J]. 农业机械学报, 2016, 47(6):42-46.
Zhai Jie, Zhu Bao-shan, Li Kai, et al.Internal pressure fluctuation characteristic of low specific speed mixed flow pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6):42-46.
[15] 王福军,张玲,张志民. 轴流泵不稳定流场的压力脉动特性研究[J].水利学报, 2007,38(8):1003-1009.
Wang Fu-jun, Zhang Ling, Zhang Zhi-min.Analysis on pressure fluctuation of unsteady flow in axial-flow pump[J]. Journal of Hydraulic Engineering, 2007, 38(8): 1003-1009.
[16] 刘琦,袁寿其. 高比转速斜流泵内部三维湍流场数值模拟的研究[J]. 农机化研究,2007(7): 75-79.
Liu Qi, Yun Shou-qi.Numerical simulation of 3D turbulent flow in the mixed-flow pump with high specific speed[J]. Journal of Agricultural Mechanization Research, 2007(7): 75-79.
[17] 施卫东,邹萍萍,张德胜,等. 高比转速斜流泵内部非定常压力脉动特性[J]. 农业工程学报,2011,27(4) :147-152.
Shi Wei-dong, Zou Ping-ping, Zhang De-sheng, et al.Unsteady flow pressure fluctuation of high-specific-speed mixed-flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011,27(4):147-152.
[18] 黎义斌,李仁年,王秀勇,等. 混流泵内部流动不稳定特性的数值模拟[J]. 排灌机械工程学报,2013,31(5):384-389.
Li Yi-bin,Li Ren-nian,Wang Xiu-yong, et al.Numerical simulation of unstable characteristics in head curve of mixed-flow pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013,31(5):384-389.
[19] 靳栓宝,王永生,常书平,等. 混流泵内流场压力脉动特性研究[J]. 农业机械学报, 2013,44(3):64-68.
Jin Shuan-bao,Wang Yong-sheng,Chang Shu-ping, et al.Pressure fluctuation of interior flow in mixed-flow[J]. Pump Transactions of the Chinese Society for Agricultural Machinery, 2013,44(3):64-68.
[20] 桂中华,常玉红,柴小龙,等. 混流式水轮机压力脉动与振动稳定性研究进展[J]. 大机电技术,2014(6):61-65.
Gui Zhong-hua, Chang Yu-hong, Chai Xiao-long, et al.Current research of francis hydro turbine pressure pulsation and vibration stability[J]. Large Electric Machine and Hydraulic Turbine, 2014(6):61-65.
[21] 郑源,陈宇杰,毛秀丽,等. 混流泵压力脉动特性及其对流动诱导噪声的影响[J]. 农业工程学报,2015,31(23):67-73.
Zheng Yuan, Chen Yu-jie, Mao Xiu-li, et al.Pressure pulsation characteristics and its impact on flow-induced noise in mixed-flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(23):67-73.
[22] 杜媛英,高强,尚长春,等. 基于大涡模拟的导叶式混流泵叶轮内压力脉动特性分析[J]. 西华大学学报:自然科学版,2016,35(4):75-78.
Du Yuan-ying, Gao Qiang, Shang Chang-chun, et al.Analysis of pressure fluctuations in impeller of guide vane mixed-flow pump based on large eddy simulation[J]. Journal of Xihua University (Natural Science Edition), 2016, 35(4):75-78.
[23] 杨建东,胡金弘,曾威,等. 原型混流式水泵水轮机过渡过程中的压力脉动[J]. 水利学报, 2016, 47(7):858-864.
Yang Jian-dong, Hu Jin-hong, Zeng Wei, et al.Transient pressure pulsations of prototype Francis pump-turbines[J]. Journal of Hydraulic Engineering, 2016, 47(7):858-864.
[24] Yao Zhi-feng, Wang Fu-jun.Experimental investigation of time-frequency characteristics of pressure fluctuations in a double-suction centrifugal pump[J]. ASME J Fluids Eng, 2011, 133(10): 101303.
[25] 赵林明,楚清河,代秋平,等. 基于小波分析与人工神经网络的水轮机压力脉动信号分析[J]. 水利学报, 2011, 42(9):1075-1080.
Zhao Lin-ming, Chu Qing-he, Dai Qiu-ping, et al.Analysis of pressure fluctuation in draft tube based on wavelet analysis and artificial neural network[J]. Journal of Hydraulic Engineering, 2011, 42(9):1075-1080.
[26] 郑源,刘君,周大庆,等. 大型轴流泵装置模型试验的压力脉动[J]. 排灌机械工程学报,2010,28(1) :51-55.
Zheng Yuan, Liu Jun, Zhou Da-qing, et al.Pressure pulsation of model test in large-size axial-flow pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(1):51-55.
[27] Duhamel P, Vetterli M.Fast Fourier transform: a tutorial review and a state of the art[J]. Signal Processing, 1990,19(4): 259-299.
[1] 古海东,罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报(工学版), 2018, 48(6): 1712-1724.
[2] 毕秋实,王国强,黄婷婷,毛瑞,鲁艳鹏. 基于DEM-FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770-1776.
[3] 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777-1786.
[4] 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507.
[5] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
[6] 王涛, 伞晓刚, 高世杰, 王惠先, 王晶, 倪迎雪. 光电跟踪转台垂直轴系动态特性[J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105.
[7] 贺继林, 陈毅龙, 吴钪, 赵喻明, 汪志杰, 陈志伟. 起重机卷扬系统能量流动分析及势能回收系统实验[J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113.
[8] 孙秀荣, 董世民, 王宏博, 李伟成, 孙亮. 整体抽油杆柱在油管内空间屈曲的多段式仿真模型对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[9] 吉野辰萌, 樊璐璐, 闫磊, 徐涛, 林烨, 郭桂凯. 基于MBNWS算法的假人胸部结构多目标优化设计[J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
[10] 刘坤, 刘勇, 闫建超, 吉硕, 孙震源, 徐洪伟. 基于体外传感检测的人体站起动力学分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146.
[11] 刘志峰, 赵代红, 王语莫, 浑连明, 赵永胜, 董湘敏. 重载静压转台承载力与油垫温度场分布的关系[J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[12] 曹婧华, 孔繁森, 冉彦中, 宋蕊辰. 基于模糊自适应PID控制的空压机背压控制器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 781-786.
[13] 李锐, 张路阳, 刘琳, 武粤元, 陈世嵬. 基于相似理论的三跨桥梁磁流变隔振[J]. 吉林大学学报(工学版), 2018, 48(3): 787-795.
[14] 邓剑勋, 熊忠阳, 邓欣. 基于谱聚类矩阵的改进DNALA算法[J]. 吉林大学学报(工学版), 2018, 48(3): 903-908.
[15] 陈忠敏, 侯力, 段阳, 张祺, 杨忠学, 蒋易强. 新型摆线针轮行星减速器传动系统的振动特性[J]. 吉林大学学报(工学版), 2018, 48(1): 174-185.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 朱剑峰, 林逸, 陈潇凯, 施国标. 汽车变速箱壳体结构拓扑优化设计[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[5] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[6] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[7] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[8] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[9] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[10] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .