吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (增刊1): 55-59.

• 论文 • 上一篇    下一篇

稀疏图像重构非凸Lp问题的分裂方法

朱永贵, 刘平, 丛佳   

  1. 中国传媒大学 理学院,北京 100024
  • 收稿日期:2012-06-19 发布日期:2013-06-01
  • 作者简介:朱永贵(1964-),男,副教授.研究方向:压缩感知,图像处理.E-mail:ygzhu@cuc.edu.cn
  • 基金资助:

    教育部科学技术研究重点项目(109030);中国传媒大学理科规划基金项目(XNL1105).

Splitting method to solve Lp problem in sparse image reconstruction

ZHU Yong-gui, LIU Ping, CONG Jia   

  1. School of Science, Communication University of China, Beijing 100024, China
  • Received:2012-06-19 Published:2013-06-01

摘要:

由于稀疏图像重构Lp(0<p<1)问题是一个非凸问题。利用半二次罚函数方法将非凸Lp问题分裂成X子最优化问题和Y子最优化问题。对于X子问题,通过光滑函数求导的方法给出其闭形式解。对于Y子问题,通过阈值收缩不动点迭代公式进行求解。对这两个子问题的交替求解过程建立了压缩感知中的稀疏图像精确重构Lp问题的分裂算法。通过MR图像进行数值模拟,实验结果表明,与L1问题求解的分裂算法相比,非凸Lp问题的分裂方法具有更高的计算精度和更低的抽样率。

关键词: 压缩感知, 非凸优化, 稀疏图像, 图像重构

Abstract:

Lp(0<p<1) problem in sparse image reconstruction is a non-convex optimization problem.The non-convex Lp problem has been splitted into two sub-problems:X sub-problem and Y sub-problem by a half-quadratic penalty method.The closed form solution for X sub-problem could be obtained by the derivative of smooth function.And the solution of Y sub-problem was solved via shrinkage fixed point iterative formula.The splitting algorithm to solve Lp problem for sparse image reconstruction in compressive sensing was estabished by the alternating minimization method for the two sub-problems.Some different kinds of MR images was employed to test in the numerical experiment,and the results demonstrate that the non-convex splitting method is not only more accuracy but also lower sampling rate than convex splitting method in the sparse image reconstruction.

Key words: compressive sensing, non-convex optimization, sparse image, image reconstruction

中图分类号: 

  • TP391

[1] Candes E J,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incompletee frequency information [J].IEEE Trans Inform Theory,2006,52(2):489-509.

[2] Donoho D L. Compressed sensing [J].IEEE Trans Inform Theory,2006,52(4):1289-1306.

[3] Candes E J,Romberg J.Sparsity and incoherence in compressive sampling [J].Inverse Problems,2007,23(3):969-985.

[4] Natarajan B K.Sparse approximation solutions to linear systems [J].SIAM J Comput,1995,24 (2):227-234.

[5] Trzasko J,Manduca A,Borisch E.Highly undersampled magnetic resonance image reconstruction via homotopic L0-minimization [J] IEEE Transactions on Medical Imaging,2009,28(1):106-121.

[6] Candes E J,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information [J].IEEE Transactions on Information Theory,2006,52(2):489-509.

[7] Kim S J,Koh K,Lustig M. An interior-point method for large-scale l1-regularized least squares [J].IEEE Trans.on Selected Topics in Signal Processing,2007,1(4):606-617.

[8] Hale E,Yin W,Zhang Y.Fixed-point continuation for l1 minimization:Methodology and convergence [J].SIAM Journal on Optimization,2008,19(3):1107-1130.

[9] Hale E,Yin W,Zhang Y.Fixed-point continuation applied to compressed sensing:Implementation and numerical experiments [J].Journal of Computational Mathematics,2010,28(2):170-194.

[10] Yin W,Osher S,Goldfarb D.Bregman iterative algorithm for l1-minimization with applications to compressed sensing [J].SIAM J.Image Sciences,2008,1(1):143-168.

[11] Goldstein T,Osher S.The split bregman method for L1-regularized problems [J].SIAM J.Image Sciences,2009,2(2):323-343.

[12] He L,Chang T C,Osher S,et al.MR image reconstruction by using the iterative refinement method and nonlinear inverse scale space methods [R].UCLA CAM Report,2006:6-35.

[13] Lustig M,Donoho D,Pauly J.Sparse MRI:The application of compressed sensing for rapid MR imaging [J].Magnetic Resonance in Medicine,2007,58(6):1182-1195.

[14] 朱永贵,杨晓兰.稀疏MR图像重构的快速算法[J].中国图象图形学报,2011,16(9):1736-1744. Zhu Yong-gui,Yang Xiao-lan.Fast reconstruction method for sparse MR image [J].Journal of Image and Graphics,2011,16(9):1736-1744.

[15] Jung H,Ye J,Kim E.Improved k-t blask and k-t sense using focuss [J].Phys Med Biol,2007,52(11):3201-3226.

[16] Ye J C,Tak S,Han Y et al.Projection reconstruction MR imaging using FOCUSS [J].Magnetic Resonance in Medicine,2007,57(4):764-775.

[17] Chartrand R.Exact reconstruction of sparse signals via nonconvex minimization[J].IEEE signal Letters,2007,14(10):707-710.

[18] Sidky E Y,Chartrand R,Pan X.Image reconstruction from few views by non-convex optimization .IEEE transaction Medical Imaging Conference Record,2007.

[19] Chartrand R,Yin W.Iteratively reweighted algorithms for compressive sensing [C]// 33rd International Conference on Acoustics Speech,and Signal Processing,2008.

[20] Chartrand R.Fast algorithms nonconvex compressive sensing:MRI reconstruction from very few data [R].IEEE International Symposium on Biomedical Imaging,2009.

[1] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[2] 刘洲洲, 王福豹. 改进的离散混合蛙跳算法压缩感知信号重构及应用[J]. 吉林大学学报(工学版), 2016, 46(4): 1261-1268.
[3] 王新华, 欧阳继红, 庞武斌. 压缩编码孔径红外成像超分辨重建[J]. 吉林大学学报(工学版), 2016, 46(4): 1239-1245.
[4] 于华楠, 代芳琳, 苏天恺. 基于压缩感知的三相电能质量扰动信号压缩及分类新方法[J]. 吉林大学学报(工学版), 2016, 46(3): 964-971.
[5] 张轶, 达新宇, 褚振勇. 低密度奇偶校验码的压缩感知重构[J]. 吉林大学学报(工学版), 2015, 45(3): 985-990.
[6] 王宏志,王贤龙,周婷婷. 基于光滑0范数的图像分块压缩感知恢复算法[J]. 吉林大学学报(工学版), 2015, 45(1): 322-327.
[7] 田文飚, 芮国胜, 张海波, 王林. 下非均匀信息采集及重构[J]. 吉林大学学报(工学版), 2014, 44(4): 1209-1214.
[8] 贺岩, 赵晓晖. 理论的宽带多用户认知系统合作检测[J]. 吉林大学学报(工学版), 2014, 44(4): 1165-1170.
[9] 王好谦, 杜成立, 惠征. 一种新的多视点分布式视频编码算法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 225-229.
[10] 葛亮, 胡封晔, 赵利英, 李莎莎. 基于WBAN的生物特征检测重构算法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 213-216.
[11] 冯鑫, 王晓明, 党建武, 沈瑜. 基于插值Directionlet变换的图像融合方法[J]. 吉林大学学报(工学版), 2013, 43(04): 1127-1132.
[12] 康荣宗, 于宏毅, 田鹏武, 郭虹. 基于压缩感知的自适应干扰抑制算法[J]. , 2012, (06): 1587-1591.
[13] 赵春晖, 腾志军, 马爽. 基于广义功率谱密度的分布压缩宽带频谱感知[J]. , 2012, 42(04): 1015-1020.
[14] 陈玫玫, 郭树旭, 王瑶, 吴斌, 于思瑶, 邵向鑫. 压缩感知的指静脉图像去噪[J]. 吉林大学学报(工学版), 2011, 41(02): 559-0562.
[15] 李洪伟, 刘佩军, 刘庆怀. 求解非凸非光滑优化问题的同伦内点法及其计算机实现[J]. 吉林大学学报(工学版), 2001, (4): 49-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!