吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (6): 1938-1944.doi: 10.13229/j.cnki.jdxbgxb20170585

• • 上一篇    

动态压缩感知波达方向跟踪算法

单泽彪1,2(),刘小松1,3(),史红伟1,王春阳1,石要武2   

  1. 1. 长春理工大学 电子信息工程学院,长春 130022
    2. 吉林大学 通信工程学院,长春 130022
    3. 西安工业大学 西北兵器工业研究院,西安 710021
  • 收稿日期:2017-06-06 出版日期:2018-11-20 发布日期:2018-12-11
  • 作者简介:单泽彪(1986-),男,副教授,博士.研究方向:光电检测与现代信号处理.
  • 基金资助:
    国防基础科研计划项目(JCKY-2016411C006);国家自然科学基金项目(61571462);长春理工大学青年科学基金项目(XQNJJ-2017-12)

DOA tracking algorithm using dynamic compressed sensing

SHAN Ze-biao1,2(),LIU Xiao-song1,3(),SHI Hong-wei1,WANG Chun-yang1,SHI Yao-wu2   

  1. 1. School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022,China
    2. College of Communication Engineering, Jilin University, Changchun 130022, China
    3. Northwest Weapon Industry Research School, Xi'an Technologyical University,Xi'an 710021,China
  • Received:2017-06-06 Online:2018-11-20 Published:2018-12-11

摘要:

针对现有动态目标波达方向(DOA)跟踪方法在单快拍条件下估计精度较低甚至失效的问题,提出了一种基于动态压缩感知的DOA跟踪算法。首先,通过前一跟踪时刻所得到的先验DOA稀疏信息,获得当前跟踪时刻信号向量中各位置非零元素的分布概率,继而建立起动态DOA的稀疏概率模型。然后,采用加权l1范数最小化方法重构出当前跟踪时刻的信号向量,从而确定非零元素的位置,获得DOA的实时估计值,最终实现运动目标的动态DOA跟踪。本文算法可以在单快拍条件下实现对动态目标DOA的良好跟踪,并且在相同条件下具有比粒子滤波算法更好的跟踪性能。最后,通过仿真试验对所提算法进行了有效性验证。

关键词: 信息处理技术, 波达方向跟踪, 动态压缩感知, 稀疏概率模型, 加权l1范数最小化

Abstract:

In order to solve the problem that the performance of Direction of Arrival (DOA) tracking of dynamic target algorithm deteriorates under single snapshot, a DOA tracking method using dynamic compressed sensing is proposed in this article. Firstly, by extracting priori information about sparsity from last signal vector, we estimate the probability of the elements being non-zero and build a sparsity probability model of dynamic DOA in the present signal vector. Secondly, we get the locations of nonzero elements of present signal vector and achieve real-time DOA tracking of dynamic targets by applying this sparsity probability model to the reconstruction of sparse signals and minimizing a weighted norm. This method can obtain real-time DOA tracking of dynamic targets in a single snapshot condition and has better tracking performance than particle filter under the same conditions. Finally, the effectiveness of proposed algorithm is verified by numerical simulation results.

Key words: information processing technology, direction of arrival(DOA) tracking, dynamic compressed sensing, sparsity probability model, weighted l1 minimization

中图分类号: 

  • TN911

图1

非零元素Sj随测量时间的变化情况"

图2

非零元素Sjt-1在测量时刻t时位置的概率分布"

图3

由S(t-1)计算概率向量pt(σ=2)"

图4

不同σ时所提算法的均方根误差"

图5

不同算法实时跟踪误差比较"

图6

不同信噪比时各算法均方根误差比较"

图7

不同阵元数时各算法的均方根误差比较"

[1] 虞飞, 陶建武 . 基于单快拍极化平滑处理的DOA跟踪算法[J]. 电子与信息学报, 2012,34(3):749-753.
doi: 10.3724/SP.J.1146.2011.00417
Yu Fei, Tao Jian-wu . DOA tracking of coherent signals based on single snapshot polarization smoothing algorithm[J]. Journal of Electronics & Information Technology, 2012,34(3):749-753.
doi: 10.3724/SP.J.1146.2011.00417
[2] 单泽彪, 石要武, 刘小松 , 等. 时变遗忘因子动态DOA跟踪算法[J]. 吉林大学学报:工学版, 2016,46(2):632-638.
Shan Ze-biao, Shi Yao-wu, Liu Xiao-song , et al. DOA tracking algorithm of moving target with variable forgetting factor[J]. Journal of Jilin University(Engineering and Technology Edition), 2016,46(2):632-638.
[3] 单泽彪, 石要武, 刘小松 , 等. 应用人工蜂群算法的动态波达方向跟踪[J]. 光学精密工程, 2015,23(3):838-845.
doi: 10.3788/OPE.20152303.0838
Shan Ze-biao, Shi Yao-wu, Liu Xiao-song , et al. DOA tracking of moving targets by artificial bee colony algorithm[J]. Optics and Precision Engineering, 2015,23(3):838-845.
doi: 10.3788/OPE.20152303.0838
[4] Wang G M, Xin J M, Wang J S , et al. Subspace-based two-dimensional direction estimation and tracking of multiple targets[J]. IEEE Transactions on Aerospace & Electronic Systems, 2015,51(2):1386-1402.
doi: 10.1109/TAES.2014.130018
[5] Zhong X H, Premkumar A B . Particle filtering approaches for multiple acoustic source detection and 2-D direction of arrival estimation using a single acoustic vector sensor[J]. IEEE Transactions on Signal Processing, 2012,60(9):4719-4733.
doi: 10.1109/TSP.2012.2199987
[6] Yang B . Projection approximation subspace tracking[J]. IEEE Transactions on Signal Processing, 1995,43(1):95-107.
doi: 10.1109/78.365290
[7] Yang B . An extension of the PASTd algorithm to both rank and subspace tracking[J]. IEEE Signal Processing Letters, 1995,2(9):179-182.
doi: 10.1109/97.410547
[8] Abed-Meraim K, Chkeif A, Hua Y . Fast orthonormal PAST algorithm[J]. IEEE Signal Processing Letters, 2000,7(3):60-62.
doi: 10.1109/97.823526
[9] Zhong X H, Mohammadi A, Premkumar A B , et al. A distributed particle filtering approach for multiple acoustic source tracking using an acoustic vector sensor network[J/OL]. [2017-08-25]..
[10] Zoltowski M D, Mathews C P . Real-time frequency and 2-D angle estimation with sub-Nyquist spatio-temporal sampling[J]. IEEE Transactions on Signal Processing, 1993,42(10):2781-2794.
doi: 10.1109/78.324743
[11] Candes E J, Wakin M B . An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008,25(2):21-30.
doi: 10.1109/MSP.2007.914731
[12] Fuchs J J . Identification of real sinusoids in noise,the global matched filter approach[J]. IFAC Proceedings Volumes, 2009: 42(10):1127-1132.
doi: 10.3182/20090706-3-FR-2004.00187
[13] Wang W Y, Wu R B . High resolution direction of arrival (DOA) estimation based on improved orthogonal matching pursuit (OMP) algorithm by iterative local searching[J]. Sensors, 2013,13(9):11167-11183.
doi: 10.3390/s130911167 pmid: 23974150
[14] Hyder M M, Mahata K . Direction-of-arrival estimation using a mixed norm approximation[J]. IEEE Transactions on Signal Processing, 2010,58(9):4646-4655.
doi: 10.1109/TSP.2010.2050477
[15] Lee D, Choi J . Learning dynamic compressive sensing models[J/OL]. [2015-07-06]..
[16] 荆楠, 毕卫红, 胡正平 , 等. 动态压缩感知综述[J]. 自动化学报, 2015,41(1):22-37.
doi: 10.16383/j.aas.2015.c140087
Jing Nan, Bi Wei-hong, Hu Zheng-ping , et al. A survey on dynamic compressed sensing[J]. Acta Automatica Sinica, 2015,41(1):22-37.
doi: 10.16383/j.aas.2015.c140087
[17] Otazo R, Candès E, Sodickson D K . Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components[J]. Magnetic Resonance in Medicine Official Journal of the Society of Magnetic Resonance in Medicine, 2015,73(3):1125-1136.
doi: 10.1002/mrm.25240 pmid: 4207853
[18] Zonoobi D, Kassim A A . On the reconstruction of sequences of sparse signals—the weighted-CS[J]. Journal of Visual Communication & Image Representation, 2013,24(2):196-202.
doi: 10.1016/j.jvcir.2012.05.002
[19] Nashid Anjum M D,Wang Hong-gang.Dynamic scheduling and analysis of real time systems with multiprocessors[J]. Digital Communications and Networks, 2016(3):130-138.
[20] Dastgahian Shakhsi Majid, Khoshbin Hossein . Rank-defective millimeter-wave channel estimation based on subspacecompressive sensing[J]. Digital Communications and Networks, 2016,( 4):206-217.
doi: 10.1016/j.dcan.2016.10.006
[1] 托乎提努尔,张海龙,王杰,王娜,冶鑫晨,王万琼. 基于图形处理器的高速中值滤波算法[J]. 吉林大学学报(工学版), 2019, 49(3): 979-985.
[2] 付银娟,李勇,徐丽琴,张昆辉. NLFM⁃Costas射频隐身雷达信号设计及分析[J]. 吉林大学学报(工学版), 2019, 49(3): 994-999.
[3] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[4] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[5] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[6] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[7] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[8] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[9] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[10] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[11] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[12] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[13] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[14] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[15] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[2] 曲昭伟,陈红艳,李志慧,胡宏宇,魏巍 . 基于单模板的二维场景重建方法[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[3] 许思传,李荣庆,程钦,郭英男,张纪鹏,孙济美,王永富 . 边界条件对乙醇HCCI发动机燃烧的影响[J]. 吉林大学学报(工学版), 2007, 37(01): 74 -78 .
[4] 杨文,石永久,王元清,施刚 . 结构钢焊接残余应力三维有限元分析[J]. 吉林大学学报(工学版), 2007, 37(02): 347 -0352 .
[5] 程平,张海涛,高岩,李俊锋,王洪艳 . ANN在聚丙烯酸酯乳液性质预测中的应用
[J]. 吉林大学学报(工学版), 2007, 37(02): 362 -0366 .
[6] 段福庆,周明全,张家才 . 基于均值漂移的非线性尺度空间滤波[J]. 吉林大学学报(工学版), 2007, 37(03): 634 -0639 .
[7] 张大庆;何清华;郝鹏;陈欠根 . 液压挖掘机铲斗轨迹跟踪的鲁棒控制[J]. 吉林大学学报(工学版), 2006, 36(06): 934 -938 .
[8] 李静,吴云平,杨宗昂,郭立书,王军,李幼德,李春峰 . 车辆姿态控制系统悬架阻尼控制策略[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 24 -28 .
[9] 金满,江中浩,连建设 . 短纤维增强金属基复合材料弹性模量临界值计算预测[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 1 -05 .
[10] 周庆才,王春艳,王鹏,王志坚 . 复消色物镜的波差法光学设计[J]. 吉林大学学报(工学版), 2007, 37(04): 944 -948 .