吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 1209-1214.doi: 10.13229/j.cnki.jdxbgxb201404047

• • 上一篇    下一篇

下非均匀信息采集及重构

田文飚, 芮国胜, 张海波, 王林   

  1. 海军航空工程学院 信号与信息处理山东省重点实验室, 山东 烟台 264001
  • 收稿日期:2013-02-06 出版日期:2014-07-01 发布日期:2014-07-01
  • 作者简介:田文飚(1987-), 男, 博士研究生.研究方向:压缩感知.E-mail:twbi5si@gmail.com
  • 基金资助:
    “泰山学者”建设工程专项经费资助项目

Non-uniform information acquisition and reconstruction within compressed sensing framework

TIAN Wen-biao, RUI Guo-sheng, ZHANG Hai-bo, WANG Lin   

  1. Key Laboratory of Signal and Information Processing in Shandong Province, Naval Aeronautical and Astronautical University, Yantai 264001, China
  • Received:2013-02-06 Online:2014-07-01 Published:2014-07-01

摘要: 为提高现有直接信息均匀压缩采样(Analog to information conversion, AIC)的观测效率和性能, 在能量准则下, 提出非均匀信息采集(Non-uniform information acquisition, NUIA), 充分利用信息的重要性先验, 即对信号随机调制后, 依据能量进行变速率的采集, 能量越大的信号段采样速率越高, 反之亦然。结合支撑域扩充、剪枝的思路提出变速匹配追踪(Variable rate matching pursuit, VRMP)算法, 通过引入非均匀观测的先验支撑集, 并在追踪过程中将其与迭代估计出的支撑集相并, 提高了重构精度。理论分析和实验结果表明了NUIA-VRMP的有效性。特别地, 相比于常规AIC的子空间追踪重构, NUIA-VRMP的组合能在低采样速率条件(如20%的Nyquist速率)下获得50 dB的重构增益。

关键词: 信息处理技术, 直接信息采样, 压缩感知, 重构算法, 非均匀采样

Abstract: The existing Analog to Information Conversation (AIC) is based on uniform-low-rate information measurement, and the importance prior information contained in the signal is underused. Under the energy criterion, a Non-Uniform Information Acquisition (NUIA) method is proposed. After random modulation, the signal is sampled at non-uniform-rate that the bigger the energy is the higher the sampling rate is and vice versa. Combing the idea of support merger with pruning, a Variable Rate Matching Pursuit (VRMP) algorithm is proposed. The prior support set, which is united with the set of signal appropriation support, is able to promote the recovery accuracy. Compared with the Subspace Pursuit (SP) reconstruction of conventional AIC, the combination of NUIA-VRMP can obtain 50dB reconstruction gain at ultra-low-rate, (e. g. 20% Nyquist Rate).

Key words: information processing technology, analog to information conversion, compressed sensing, reconstruction algorithm, non-uniform sampling

中图分类号: 

  • TN911.72
[1] Candès E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
[2] Donoho D L. Compressed sensing[J]. IEEE Trans on Information Theory, 2006, 52(4):1289-1306.
[3] Strohmer T. Measure what should be measured: progress and challenges in compressive sensing[J]. IEEE Signal Processing Letters, 2012, 19(12):887-893.
[4] Laska J, Kirolos S, Massoud Y, et al.Random sampling for analog-to-information conversion of wideband signals[C]∥IEEE Dallas Circuits and Systems Workshop (DCAS), Richardson, TX, 2006.
[5] Kirolos S, Laska J, Wakin M, et al. Analog-to-information conversion via random demodula-tion[C]∥IEEE Dallas Circuits and Systems Workshop (DCAS), Richardson, TX, 2006.
[6] Laska J, Kirolos S, Duarte M, et al. Theory and implementation of an analog-to-information converter using random demodulation[C]∥IEEE International Symposium on Circuits and Systems, ISCAS, New Orleans, LA, 2007.
[7] Tropp J A, Laska J N, Duarte M F, et al. Beyond Nyquist: efficient sampling of sparse bandlimited signals[J]. IEEE Trans on Information Theory, 2010, 56(1): 520-544.
[8] Taheri O, Vorobyov S A. Segmented compressed sampling for analog-to-information conversion: method and performance analysis[J]. IEEE Trans on Signal Processing, 2011, 59(2):554-572.
[9] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
[10] Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Trans on Information Theory, 2009, 55(5):2230-2249.
[11] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61.
[12] Davenport M A, Wakin M B. Analysis of orthogonal matching pursuit using the restricted isometry property[J]. IEEE Trans on Information Theory, 2010, 56(9):4395-4401.
[13] Candès E J. The restricted isometry property and its implications for compressed sensing[J]. Compte Rendus de l'Academie des Sciences, 2008, Series I(346):589-592.
[14] 田文飚, 付争, 芮国胜.基于分治试探的盲自适应匹配追踪重构算法[J].通信学报, 2013, 34(4):180-186. Tian Wen-biao, Fu Zheng, Rui Guo-sheng. A blind adaptive matching pursuit algorithm for signal reconstruction based on sparsity trial and error[J]. Journal on Communications, 2013, 34(4):180-186.
[15] 杨海蓉, 张成, 丁大为, 等. 压缩传感理论与重构算法[J]. 电子学报, 2011, 39(1):142-148. Yang Hai-rong, Zhang Cheng, Ding Da-wei, et al.The theory of compressed sensing and reconstruction algorithm[J].Acta Electronica Sinica, 2011, 39(1):142-148.
[16] Grant M, Boyd S.CVX users' guide for CVX version 1.2[OL/DB].[2012-11-13].http://www.stanford.edu/~boyd/cvx.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!