吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (5): 1498-1505.doi: 10.7964/jdxbgxb201405043

• • 上一篇    下一篇

认知无线电中继协助网络资源分层优化算法

陈健, 樊光辉, 阔永红   

  1. 西安电子科技大学 通信工程学院,西安 710071
  • 收稿日期:2013-02-22 出版日期:2014-09-01 发布日期:2014-09-01
  • 作者简介:陈健(1968), 男, 教授, 博士生导师.研究方向:认知网络.E-mail:jianchen@mail.xidian.edu.cn
  • 基金资助:
    国家自然科学基金项目(60972072,61340033); 高等学校学科创新引智计划项目(B08038).

Hierarchical optimization algorithm for resource allocation in relay-assisted cognitive radio network

CHEN Jian,FAN Guang-hui,KUO Yong-hong   

  1. School of Telecommunications Engineering, Xidian University, Xi′an 710071, China
  • Received:2013-02-22 Online:2014-09-01 Published:2014-09-01

摘要: 在认知多用户中继网络系统场景下,针对时变信道完全DF中继两跳传输的差异性问题,采用纳什议价公平性准则效用函数,提出了联合用户传输模式选择、子载波配对、信道分配和功率分配的分层优化模型。利用拉格朗日对偶理论实现模型分层求解,在降低算法复杂度的同时提升了系统效用及吞吐量。仿真结果表明:相对于完全中继、直传网络和非载波配对的中继网络,所提算法在兼顾用户速率需求和公平性的同时可使系统吞吐量获得较大提高。

关键词: 通信技术, 认知无线电, 中继协助, 资源分配, 拉格朗日对偶, 分层优化

Abstract: In order to diversity problem of two-hop complete Decode-and-Forward (DF) relay transmission in time-varying channels, a hierarchical optimization model is proposed. This model is based on Nash bargaining fairness criterion, and it combines transmission mode selection, subcarrier pairing, channel assignment and power allocation. Taking the advantage of Lagrange Duality, the proposed model reduces the algorithm complexity, improves the system utility and enhances the overall throughput. Simulation results show that, compared with complete relay transmission models, direct transmission models and non-carrier-pairing transmission models, the proposed algorithm achieves great improvement in system throughput and ensures the users' rate requirement and fairness at the same time.

Key words: communication technology, cognitive radio, relay assisted, resource allocation, Lagrange dual, hierarchical optimization

中图分类号: 

  • TN925
[1] Zhang Q, Jia J C, Zhang J. Cooperative relay to improve diversity in cognitive radio networks[J]. IEEE Communications Magazine, 2009, 47(2):111-117.
[2] Zou Y L, Zhu J, Zheng B Y, et al. An adaptive cooperation diversity scheme with best-relay selection in cognitive radio networks[J]. IEEE Transactions on Signal Processing, 2010, 58(10):5438-5445.
[3] Bharadia D, Bansal G, Kaligineedi P, et al. Relay and power allocation schemes for OFDM-based cognitive radio systems[J]. IEEE Transactions on Wireless Communications, 2011, 10(9):2812-2817.
[4] Shaat M, Bader F. Asymptotically optimal resource allocation in OFDM-based cognitive networks with multiple relays[J]. IEEE Transactions on Wireless
Communications, 2012, 11(3):892-897.
[5] Chen C H, Wang C L, Chen C T. A resource allocation scheme for cooperative multiuser OFDM-based cognitive radio systems[J]. IEEE Transactions on Wireless Communications, 2011, 59(11):3204- 3215.
[6] Wang R, Lau V K N, Cui Y. Decentralized fair scheduling in two-hop relay-assisted cognitive OFDMA systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(1):171-181.
[7] Luan T X, Gao F F, Zhang X D. Joint resource scheduling for relay-assisted broadband cognitive radio network[J]. IEEE Transactions on Wireless Communications, 2012, 11(9):3090-3100.
[8] Zhao G D, Yang C Y, Li G Y, et al. Power and channel allocation for cooperative relay in cognitive radio networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(1):151-159.
[9] Liu Y, Chen W. Limited-feedback-based adaptive power allocation and subcarrier pairing for OFDM DF relay networks with diversity[J]. IEEE Transactions on Vehicular Technology, 2012, 61(6):2559-2571.
[10] Attar A, Nakhai M R, Aghvami A H. Cognitive radio game for secondary spectrum access problem[J]. IEEE Transactions on Wireless Communications, 2009, 8(4):2121-2131.
[11] Ngo D T, Le-Ngoc T. Distributed resource allocation for cognitive radio networks with spectrum-sharing constraints[J]. IEEE Transactions on Vehicular Technology, 2011, 60(7): 3436-3449.
[12] Yu W, Lui R. Dual methods for non-convex spectrum optimization of multicarrier systems [J]. IEEE Transactions on Communications, 2006, 54(7):1310-1322.
[13] Ng T C Y, Yu W. Joint optimization of relay strategies and resource allocations in cooperative cellular networks[J]. IEEE Journal on Selected Areas in Communications, 2007, 25(2):328-339.
[14] Kuhn H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955,2(1/2):83-97.
[15] Tao M X, Liang Y C, Zhang F. Resource allocation for delay differentiated traffic in multiuser OFDM systems[J]. IEEE Transactions on Wireless Communications, 2008, 7(6):2190-2201.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[10] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[11] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[12] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[13] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[14] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
[15] 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!