吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 1182-1190.doi: 10.13229/j.cnki.jdxbgxb201404043

• • 上一篇    下一篇

消散型同步的微弱周期信号检测及噪声影响分析

行鸿彦, 龚平, 徐伟   

  1. 1.南京信息工程大学 气象灾害预报预警与评估协同创新中心, 南京 210044;
    2.南京信息工程大学 江苏省气象探测与信息处理重点实验室, 南京 210044;
    3.南京信息工程大学 电子与信息工程学院, 南京 210044
  • 收稿日期:2013-01-14 出版日期:2014-07-01 发布日期:2014-07-01
  • 作者简介:行鸿彦(1962-), 男, 教授, 博士.研究方向:微弱信号检测与处理, 仪器仪表设计. E-mail:xinghy@nuist.edu.cn
  • 基金资助:
    国家自然科学基金项目(61072133); 江苏省产学研联合创新计划项目(BY2013-02, BY2011112); 江苏省“信息与通信工程”优势学科建设项目

Weak periodic signal detection based on dissipative coupling synchronization and noise impact analysis

XING Hong-yan1, 2, 3, GONG Ping1, 2, 3, XU Wei1, 2, 3   

  1. 1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, University of Information Science and Technology, Nanjing 210044, China;
    2.Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044, China;
    3.College of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2013-01-14 Online:2014-07-01 Published:2014-07-01

摘要: 在混沌预测模型基础上, 提出了消散型同步的混沌背景下微弱信号检测算法。采用径向基函数神经网络(RBFNN)拟合混沌模型, 结合消散型同步实现混沌时间序列与混沌系统的同步, 利用同步误差实现微弱信号的检测。以Rossler混沌系统为研究对象, 验证了算法的可行性, 研究了噪声对微弱信号检测的影响。仿真研究表明, 该算法能检测各种频率的微弱信号, 在一定条件下可检测到信杂比大于-110 dB的微弱周期信号;若信噪比SNR≥0 dB, 噪声对微弱信号检测的影响很小;但若SNR<-10 dB, 将检测不出微弱信号。在理论研究基础上, 由MKS-CEC-Ⅲ新型混沌演化控制实验仪获取Coullet混沌时间序列, 添加不同频率的微弱信号, 利用该算法实现了不同频率微弱信号的检测, 说明该算法适用于其他混沌系统。

关键词: 通信技术, 混沌, 消散型混沌同步, 微弱信号检测, 径向基函数神经网络

Abstract: Based on the chaos forecasting model, a dissipative coupling detection method is proposed for detecting weak signal in chaotic background. The Radial Basis Function Neural Network (RBFNN) is applied to fit the chaos forecasting model. The synchronization between chaotic time series and chaos system is realized by combination of RBFNN and dissipative coupling. Then the synchronization error is used to detect the weak signal. The Rossler chaos system is taken as the object to test the feasibility of the proposed method and analyze its performance with weak signals of different frequencies. In order to avoid the mixed impact of noise and chaos time series to the performance of the method, the interference of noise intensity on weak signal detection is investigated in depth. Simulation results show that the proposed method can detect weak signal with different frequencies; under certain conditions, the method can detect weak periodic signal if the Signal-to-Clutter Ratio is bigger than -110 dB. The noise influence on the detection performance can be ignored if the Signal-to-Noise Ratio (SNR) ≥ 0 dB. On the basis of theoretical study, a new type chaotic evolution control experiment instrument MKS-CEC-Ⅲ is applied to produce practical Coullet chaotic time series and add weak signals with different frequencies into time series respectively. This method is used to detect the weak signal from the mixed signal. It is demonstrated that the method can detect added frequency signal from chaotic background and it can also be applied to other chaotic systems.

Key words: communication, chaos, dissipative coupling chaos synchronization, weak signal detection, radial basis function neural network

中图分类号: 

  • TN911.23
[1] Holger K, Thomas S.Nonlinear Time Series Analysis[M].London:Cambridge University Press, 1997.
[2] Matthew B K, Brown R, Henry D I A. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review A, 1992, 45(6): 3403-3411.
[3] Cao L Y. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D: Nonlinear Phenomena, 1997, 110(1-2):43-50.
[4] Kugiumtzis D. State space reconstruction parameters in the analysis of chaotic time series—the role of the time window length[J]. Physica D: Nonlinear Phenomena, 1996, 95(1):13-28.
[5] Fraser A M, Swinney H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A, 1986, 33(2): 1134-1140.
[6] Haykin S, Li X B.Detection of signals in chaos[J].Proc of IEEE, 1995, 83(1):95-122.
[7] 陈瑛, 罗鹏飞.海杂波背景下基于RBF神经网络的目标检测[J].雷达科学与技术, 2005, 3(5):271-275. Cheng Ying, Luo Peng-fei. Target detection in sea clutter based on RBF neural network[J]. Radar Science and Technology, 2005, 3(5): 271-275.
[8] Hennessey G, Leung H, Drosopoulos A, et al. Sea-clutter modeling using a radial-basis-function neural network[J]. IEEE on Oceanic Engineering, 2001, 26(3):358-372.
[9] 行鸿彦, 金天力. 基于对偶约束最小二乘支持向量机的混沌海杂波背景中的微弱信号检测[J]. 物理学报, 2010, 59(1):140-146. Xing Hong-yan, Jin Tian-li. Weak signal estimation in chaotic clutter using wavelet analysis and symmetric LS-SVM regression[J]. Acta Physica Sinica, 2010, 59(1):140-146.
[10] Zhou C T, Teo K B, Chew L Y. Detection of signals from noisy chaotic interference[J]. Physica Scripta, 2002, 65(6):469-475.
[11] Kurian A P, Leung H. Model based synchronization for weak signal detection[C]∥IEEE International Instrumentation and Measurement Technology Conference, Vancouver Island, 2008:1219-1222.
[12] Kurian A P, Leung H. Weak signal estimation in chaotic clutter using model-based coupled synchronization[J]. IEEE Transactions on Circuits and Systems, 2009, 56 (4):820-828.
[13] He D, Leung H. CFAR detection of weak target in clutter using chaos synchronization[J]. Interna- tional Journal of Circuit Theory and Applications, 2007, 36(8):899-921.
[14] Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64(8):821-824.
[15] 王茂林, 刘少伟, 孙晓东. 复杂噪声背景下正弦频率估计新方法[J]. 吉林大学学报:工学版, 2009, 39(2):371-375. Wang Mao-lin, Liu Shao-wei, Sun Xiao-dong. New frequency estimation method for sinusoidal signal submerged in complicated noise[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(2):371-375.
[16] 孙晓东, 石要武, 于晓辉. 混沌干扰背景下的正弦频率估计新方法[J]. 吉林大学学报:工学版, 2009, 39(5):1353-1357. Sun Xiao-dong, Shi Yao-wu, Yu Xiao-hui. New frequency estimation method for sinusoidal signal submerged in strong chaotic background[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(5):1353-1357.
[17] Parlitz U. Estimating model parameters from time series by autosynchronization[J]. Physical Review Letters, 1996, 76(8):1232-1235.
[18] Konnur R. Estimation of all model parameters of chaotic systems from discrete scalar time series measurements[J]. Physics Letters A, 2005, 346 (4):275-280.
[19] Brown R, Rulkov N F, Tracy E R. Modeling and synchronizing chaotic systems from time-series data[J]. Physical Review E, 1994, 49(5): 3784-3800.
[20] Voss H U. Synchronization of reconstructed dynamical systems[J]. Chaos, 2003, 13(1): 327-334.
[21] 张袅娜, 周邃, 张德江. 基于主动控制的异结构混沌系统有限时间同步[J]. 吉林大学学报:工学版, 2011, 41(4):1131-1134. Zhang Niao-na, Zhou Sui, Zhang De-jiang. Synchronization control of finite time conver- gence between two different structure chaos systems[J]. Journal of Jilin University (Engineer- ing and Technology Edition), 2011, 41(4):1131- 1134.
[22] 黄报星. Lorenz系统的混沌同步与保密通信[J]. 吉林大学学报:工学版, 2003, 33(3):60-63. Huang Bao-xing. Chaotic synchronization of Lorenz systems and secure communication[J]. Journal of Jilin University (Engineering and Technology Edition), 2003, 33(3):60-63.
[23] 秦洁, 于洪洁. 超混沌Rossler系统构成的星形网络的混沌同步[J]. 物理学报, 2007, 56(12): 6828-6835. Qin Jie, Yu Hong-jie. Synchronization of starnetwork of hyperchaotic Rossler systems[J]. Acta Physica Sinica, 2007, 56(12):6828-6835.
[24] Zhu X, Chen Z, Gao Z, et. al. Experimental research and verification for Coullet chaos system[C]∥The Sixth International Conference on Natural Computation, Yantai, 2010: 3040-3044.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[10] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[11] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[12] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[13] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[14] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
[15] 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!