吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1676-1683.doi: 10.13229/j.cnki.jdxbgxb201406022

• • 上一篇    下一篇

四轴抛光平台综合误差建模及分析

赵帼娟, 张雷, 卢磊, 韩飞飞, 赵继   

  1. 吉林大学 机械科学与工程学院,长春 130022
  • 收稿日期:2013-07-22 出版日期:2014-11-01 发布日期:2014-11-01
  • 通讯作者: 张雷( 1970-),男,教授,博士生导师.研究方向:智能精密制造.E-mail:zhanglei@jlu.edu.cn
  • 作者简介:赵帼娟(1987-),女,博士研究生.研究方向:智能精密制造.E-mail:
  • 基金资助:
    “973”国家重点基础研究发展计划项目(2011CB706702)

Modeling and analysis of the volumetric errors of four-axis polishing platform

ZHAO Guo-juan, ZHANG Lei, LU Lei, HAN Fei-fei, ZHAO Ji   

  1. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2013-07-22 Online:2014-11-01 Published:2014-11-01

摘要: 针对两个直线电机驱动的以气浮平台和两个旋转台为主要运动单元的四轴抛光系统,利用多体系统理论,建立了同时考虑位置误差和方向误差的综合误差模型。运用激光干涉仪对气浮平台各单项几何误差和旋转台的定位误差进行测量。对测量结果分析发现,气浮平台定位误差没有明显的线性增加或减小的趋势,竖直直线度大于定位误差和水平直线度,与传统滚珠丝杠驱动的运动平台误差相比有很大的不同。通过将试验与理论相结合的定量研究,得到了在气浮平台单项几何误差及其相互之间的垂直度误差共同影响下的两轴联动工况下综合误差的位置和方向分量,发现气浮平台综合误差竖直方向的分量很显著,揭示了气浮平台产生几何误差的原因,为抛光平台的几何误差补偿提供了理论依据。

关键词: 机床, 气浮平台, 综合误差, 几何误差, 多体系统

Abstract: The volumetric error of a four-axis polishing platform with two aerostatic stages driven by linear motors and two rotational stages is modeled considering both position error and direction error by multi-body system theory. The individual geometric errors of the motion parts are measured by laser interferometer. The measuring results indicate that, for aerostatic stage, the position error shows neither linear increasing nor decreasing trend; the vertical straightness is larger than the position error and the vertical st4aightness, which is obviously different from the errors of traditional ball screw driven platform. The position component and direction component of the volumetric error of the resultant motion of two linear axes are investigated theoretically and experimentally considering the comprehensive influence of the individual geometric errors of the aerostatic stages. It is found that the vertical component of the volumetric error of the aerostatic stage is obvious. The causes of the geometric errors of the aerostatic stages are revealed, which provides the theoretical basis for geometric error compensation of the polishing platform.

Key words: machine tool technology, aerostatic stage, volumetric error, geometric error, multi-body system

中图分类号: 

  • TH161
[1] 杨建国. 数控机床误差补偿技术现状与展望[J]. 航空制造技术,2012(5):40-45. Yang Jian-guo. Present situation and prospect of error compensation technology for NC machine tool[J]. Aeronautical Manufacturing Technology,2012(5):40-45.
[2] 王维,杨建国,姚晓栋,等. 数控机床几何误差与热误差综合建模及其实时补偿[J]. 机械工程学报,2012,48(7):165-170. Wang Wei,Yang Jian-guo,Yao Xiao-dong,et al. Synthesis modeling and real-time compensation of geometric error and thermal error for CNC machine tools[J]. Journal of Mechanical Engineering,2012,48(7):165-170.
[3] 王秀山,杨建国,闫嘉钰. 基于多体系统理论的五轴机床综合误差建模技术[J]. 上海交通大学学报,2008,42(5):761-764. Wang Xiu-shan,Yang Jian-guo, Yan Jia-yu. Synthesis error modeling of the five axis machine tools based on multi-body system theory[J]. Journal of Shanghai Jiaotong University,2008,42(5): 761-764.
[4] Lee R S,Lin Y H. Applying bidirectional kinematics to assembly error analysis for five-axis machine tools with general orthogonal configuration[J]. International Journal of Advanced Manufacturing Technology,2012, 62(9-11):1261-1272.
[5] Zhang Yi, Yang Jian-guo, Zhang Kun. Geometric error measurement and compensation for the rotary table of five-axis machine tool with double ballbar[J]. International Journal of Advanced Manufacturing Technology,2013,65(1-4): 275-281.
[6] 范晋伟,宋贝贝,王称心,等. TTTRR型五轴数控机床通用几何误差补偿关键技术的研究[J]. 机械设计与制造,2012(5):171-173. Fan Jin-wei,Song Bei-bei,Wang Chen-xin,et al. Research on key technology of general geometric error compensation of “TTTRR” type 5-axis numerical control machine[J]. Machinery Design & Manufacture,2012(5):171-173.
[7] Kong L B,Cheung C F,To S,et al. A kinematics and experimental analysis of form error compensation in ultra-precision machining[J]. International Journal of Machine Tools and Manufacture,2008,48(12-13):1408-1419.
[8] 刘志峰,刘广博,程强,等. 基于多体系统理论的精密立式加工中心精度建模与预测[J]. 吉林大学学报:工学版,2012,42(2): 388-391. Liu Zhi-feng,Liu Guang-bo,Cheng Qiang,et al. Precision modeling and prediction of precise vertical machining center based on theory of multi-body system[J]. Journal of Jilin University (Engineering and Technology Edition),2012,42(2): 388-391.
[9] 粟时平,李圣怡. 五轴数控机床综合空间误差的多体系统运动学建模[J]. 组合机床与自动化加工技术,2003(5):15-18. Su Shi-ping, Li Sheng-yi. Modeling the volumetric synthesis error of 5-axis machine tools based on multi-body system kinematics[J]. Modular Machine Tools and Automatic Manufacturing Technique,2003(5):15-18.
[10] Chow J H,Zhong Z W,Lin W,et al. A study of thermal deformation in the carriage of a permanent magnet direct drive linear motor stage[J]. Applied Thermal Engineering,2012,48:89-96.
[11] Gao W,Arai Y, Shibuya A,et al. Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage[J]. Precision Engineering,2006,30(1):96-103.
[12] Ekinci T O,Mayer J R R. Relationships between straightness and angular kinematic errors in machines[J]. International Journal of Machine Tools and Manufacture,2007,47(12-13):1997-2004.
[13] Onat E T,Mayer J R R, Cloutier G M. Investigation of accuracy of aerostatic guideways[J]. International Journal of Machine Tools and Manufacture,2009,49(6):478-487.
[14] Mu Dong-hui,Chen Dong-ju,Fan Jin-wei,et al. Carriage error identification based on cross-correlation analysis and wavelet transformation[J]. Sensors,2012,12:9551-9565.
[15] 杨建国,范开国,杜正春,等. 数控机床误差实时补偿技术[M].北京:机械工业出版社,2013.
[16] 韩飞飞,赵继,张雷,等. 数控机床几何精度综合解析与试验研究[J]. 机械工程学报,2012,48(21): 141-148. Han Fei-fei,Zhao Ji,Zhang Lei,et al. Synthetical analysis and experimental study of the geometric accuracy of CNC machine tools[J]. Journal of Mechanical Engineering,2012,48(21): 141-148.
[1] 郑玉彬, 杨斌, 王晓峰, 申桂香, 赵宪卓, 秦猛猛. 基于威布尔分布的电主轴加速寿命试验时间设计[J]. 吉林大学学报(工学版), 2018, 48(3): 767-772.
[2] 申桂香, 曾文彬, 张英芝, 吴茂坤, 郑玉彬. 最小故障率下数控组合机床平均维修时间确定[J]. 吉林大学学报(工学版), 2017, 47(5): 1519-1526.
[3] 曲兴田, 赵永兵, 刘海忠, 王昕, 杨旭, 陈行德. 串并混联机床几何误差建模与实验[J]. 吉林大学学报(工学版), 2017, 47(1): 137-144.
[4] 张英芝, 刘津彤, 申桂香, 戚晓艳, 龙哲. 基于故障相关性分析的数控机床系统可靠性建模[J]. 吉林大学学报(工学版), 2017, 47(1): 169-173.
[5] 孟书, 申桂香, 张英芝, 龙哲, 曾文彬. 基于时间相关的数控机床系统组件更换时间[J]. 吉林大学学报(工学版), 2016, 46(6): 1946-1952.
[6] 李洪洲, 杨兆军, 许彬彬, 王彦鹍, 贾玉辉, 侯超. 数控机床可靠性评估试验周期设计[J]. 吉林大学学报(工学版), 2016, 46(5): 1520-1527.
[7] 王健健, 冯平法, 张建富, 吴志军, 张国斌, 闫培龙. 卡盘定心精度建模及其保持特性与修复方法[J]. 吉林大学学报(工学版), 2016, 46(2): 487-493.
[8] 杨兆军, 杨川贵, 陈菲, 郝庆波, 郑志同, 王松. 基于PSO算法和SVR模型的加工中心可靠性模型参数估计[J]. 吉林大学学报(工学版), 2015, 45(3): 829-836.
[9] 王晓燕,申桂香,张英芝,孙曙光,戚晓艳,荣峰. 基于故障链的复杂系统故障相关系数建模[J]. 吉林大学学报(工学版), 2015, 45(2): 442-447.
[10] 王继利, 杨兆军, 李国发, 朱晓翠. EM算法的多重威布尔可靠性建模[J]. 吉林大学学报(工学版), 2014, 44(4): 1010-1015.
[11] 杨兆军,王继利,李国发,张新戈. 冲压机床可靠性增长的模糊层次分析预测方法[J]. 吉林大学学报(工学版), 2014, 44(3): 686-691.
[12] 杨兆军, 杨川贵, 陈菲, 王东亮, 马帅, 刘博. 基于最小二乘算法和SVDUKF算法的电液伺服加载优化[J]. 吉林大学学报(工学版), 2014, 44(2): 392-397.
[13] 陈传海, 杨兆军, 陈菲, 郝庆波, 许彬彬, 阚英男. 基于Bootstrap-Bayes的加工中心主轴可靠性建模[J]. 吉林大学学报(工学版), 2014, 44(01): 95-100.
[14] 申桂香, 孟书, 张英芝, 戚小艳, 栾兰, 宋琪. 平均秩次法在子系统可靠性建模中的应用[J]. 吉林大学学报(工学版), 2014, 44(01): 101-105.
[15] 陈传海, 杨兆军, 陈菲, 郝庆波, 许彬彬, 阚英男. 基于模糊数据包络分析的数控机床故障模式分析[J]. 吉林大学学报(工学版), 2013, 43(06): 1523-1528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!