吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (1): 297-303.doi: 10.13229/j.cnki.jdxbgxb201501043

• 论文 • 上一篇    下一篇

无线Mesh网络负载与干扰感知传输时间路由度量

王继红,石文孝,尚硕,许银龙,李玉信,王春悦   

  1. 吉林大学 通信工程学院,长春 130012
  • 收稿日期:2013-11-11 出版日期:2015-02-01 发布日期:2015-02-01
  • 通讯作者: 石文孝(1960),男,教授,博士生导师.研究方向:无线资源管理技术,无线Mesh网络技术,光无线通信.E-mail:swx@jlu.edu.cn
  • 作者简介:王继红(1986),女,博士研究生.研究方向:无线Mesh网络技术.E-mail:wangjihong07@126.com
  • 基金资助:
    国家自然科学基金项目(61373124).

Load and interference-aware transmission time routing metric for wireless mesh networks

WANG Ji-hong, SHI Wen-xiao, SHANG Shuo, XU Yin-long, LI Yu-xin, WANG Chun-yue   

  1. College of Communication Engineering, Jilin University, Changchun 130012, China
  • Received:2013-11-11 Online:2015-02-01 Published:2015-02-01

摘要: 提出了无线Mesh网络负载与干扰感知传输时间LIATT(Load and interference-aware transmission time)路由度量,有效继承了CATT(Contention aware transmission time)和INX(Interferer neighbors count)路由度量统一描述流内和流间干扰的优势。LIATT使用节点处的缓存队列长度捕捉负载,使用邻区平均负载强度捕捉干扰,实现有效的网络负载均衡与干扰感知,避免将数据包路由到网络负载和干扰较重区域而导致拥塞的问题。利用NS-2仿真软件进行的性能评价表明:本文路由度量能有效实现网络负载均衡,提升网络整体性能。

关键词: 通信技术, 无线Mesh网络, 路由度量, 负载均衡, 干扰感知

Abstract: A Load and Interference-Aware Transmission Time (LIATT) routing metric is proposed. It inherits the advantage of describing intra-flow and inter-flow interference uniformly. The buffer queue length of node is used to capture traffic load, and the average load of adjacent areas is used to capture interference, thus, achieving the load-balancing function and interference-aware function, which can avoid routing packets into heavy load and intense interference area. Simulation with NS-2 software is carried out to evaluate the performance of the proposed LIATT routing metric. Results show that the LIATT routing metric can effectively achieve load balancing and improve the whole network performance.

Key words: communication, wireless mesh networks, routing metric, load balancing, interference-aware

中图分类号: 

  • TN92
[1] Wu Di, Bao Li-chun, Regan Amelia C, et al. Large-scale access scheduling in wireless mesh networks using social centrality[J]. Journal of Parallel and Distributed Computing, 2013, 73(8): 1049-1065.
[2] Subramanian P A, Buddhikot M, Miller S. Interference aware routing in multi-radio wireless mesh networks[C]∥The 2nd IEEE Workshop on Wireless Mesh Networks, Reston, USA, 2006: 55-63.
[3] Stallings William. Data and Computer Communications[M]. New Jersey: Prentice Hall, 1997.
[4] Couto D S J D, Aauayo D, Bicket J, et al. A high-throughput path metric for multi-hop wireless routing[C]∥The 9th MobiCom, San Diego, USA, 2003: 134-146.
[5] Draves R, Padhye J, Zill B. Routing in multi-radio, multi-hop wireless mesh networks[C]∥MobiCom, Philadelphia, USA, 2004: 114-128.
[6] Yang Ya-ling, Wang Jun, Kravets Robin. Interference-aware load balancing for multihop wireless networks[C]∥The Proceeding of the IEEE Workshop on Wireless Mesh Networks, Santa Clara, USA, 2005.
[7] Subramanian P A, Buddhikot M, Miller S. Interference aware routing in multi-radio wireless mesh networks[C]∥The 2nd IEEE Workshop on Wireless Mesh Networks, Reston, USA, 2006: 55-63.
[8] Genetzakis M, Siris A V. A contention-aware routing metric for multi-rate multi-radio mesh networks[C]∥The 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, San Francisco, CA, United States, 2008: 242-250.
[9] Langar R, Bouabdallah N, Boutaba R. Mobility-aware clustering algorithms with interference constraints in wireless mesh networks[J]. Computer Networks, 2009, 53(1): 25-44.
[10] Perkins E C, Royer B E. Ad hoc on-demand distance vector routing[S]. IEEE Workshop on Mobile Computing and Systems and Applications,1999.
[11] Sun Wei-feng, Fu Tong, Xia Feng, et al. A dynamic channel assignment strategy based on cross-layer design for wireless mesh networks[J]. International Journal of Communication Systems, 2012, 25(9): 1122-1138.
[12] Ding Yong, Huang Yi, Zeng Guo-kai, et al. Using partially overlapping channels to improve throughput in wireless mesh networks[J]. IEEE Transactions on Mobile Computing, 2012, 11(11): 1720-1733.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[10] 张维维, 何家峰, 高国旺, 任丽莉, 申铉京. 混合式无线Mesh网络路由与信道分配联合优化[J]. 吉林大学学报(工学版), 2018, 48(1): 268-273.
[11] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[12] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[13] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[14] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[15] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!