吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1318-1323.doi: 10.13229/j.cnki.jdxbgxb201504042

• • 上一篇    下一篇

基于双权重聚合的立体匹配算法

何凯, 朱程涛, 姚静娴   

  1. 天津大学 电子信息工程学院,天津 300072
  • 收稿日期:2014-11-26 出版日期:2015-07-01 发布日期:2015-07-01
  • 作者简介:何凯(1972-),男,副教授,博士.研究方向:数字图像及视频修复,电子稳像,图像拼接,纹理识别.E-mail:hekai626@163.com
  • 基金资助:
    国家自然科学基金项目(61271326)

Stereo matching algorithm based on double weighting aggregation

HE Kai, ZHU Cheng-tao, YAO Jing-xian   

  1. School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China
  • Received:2014-11-26 Online:2015-07-01 Published:2015-07-01

摘要: 针对传统的局部立体匹配算法通常采用基于窗口聚合匹配的方法获得视差图,采用分割与平面拟合的方法进行视差精炼,算法性能过度依赖于窗口尺寸、分割与数据拟合的精度的问题,提出了基于双边滤波的双权重聚合方法,利用快速匹配代价的方法进行聚合,在视差精炼阶段采用双曲线平滑聚合匹配代价的策略;这种不依赖于窗口大小的算法有利于提高匹配精度。仿真实验结果表明,本文算法在低纹理区域和深度不连续区域均得到了较高的立体匹配精度;针对实际场景进行的立体匹配,可以得到较高精度的视差图及三维重建效果。

关键词: 通信技术, 立体匹配, 权重聚合, 快速代价聚合, 视差精炼, 三维重建

Abstract: In traditional local matching algorithms, the window-based aggregation methods are usually used to obtain disparity map; also, the segmentation and plane fitting methods are used in disparity refinement. The performance of the algorithms is greatly dependent on the window size, and precision of segmentation and data fitting methods. In this paper, a stereo matching algorithm based bilateral filter is proposed, which is called double weighting aggregation. The fast cost aggregation method and hyperbola are employed to smooth the matching cost. The proposed algorithm is beneficial to improve the stereo matching accuracy since it is independent on the window size. The simulation results show that the proposed algorithm can obtain higher accuracy disparity map in low-texture and depth discontinuity regions. Besides, superior disparity map and 3D reconstruction results are also achieved in real stereo images.

Key words: communication, stereo matching, weighted aggregation, fast cost aggregation, disparity refinement, 3D reconstruction

中图分类号: 

  • TN91
[1] Sharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal on Computer Vision, 2002, 47(1-3): 7-42.
[2] Yoon K J, Kweon S. Adaptive support-weight approach for correspondence search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 650-656.
[3] Min D, Lu J, Do M. Joint histogram based cost aggregation for stereo matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(10): 2539-2545.
[4] Humenberger M, Zinner C, Weber M, et al. A fast stereo matching algorithm suitable for embedded real-time systems[J]. Computer Vision and Image Understanding, 2010, 114(11): 1180-1202.
[5] Einecke N, Eggert J. A two-stage correlation method for stereoscopic depth estimation[C]∥International Conference on Digital Image Computing: Techniques and Applications,Sydney, New South Wales, 2010: 227-234.
[6] Saygili Gorkem, van der Maaten Laurens, Hendriks Emile A. Feature-based stereo matching using graph-cuts[C]∥Conference on Asian Society of Cardiovascular Imaging,Hong Kong, 2011: 14-15.
[7] Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[C]∥The 18th International Conference on Pattern Recognition,Hong Kong, 2006: 15-18.
[8] Cigla Cevahir, Alatan A Aydin. Information permeability for stereo matching[J].Signal Processing on Image Communication, 2013, 28(9): 1072-1088.
[9] Mattoccia S, Tombari F, Di Stefano L. Fast full-search equivalent template matching by enhanced bounded correlation[J]. IEEE Transactions on Image Processing, 2008, 17(4): 528-538.
[10] Hosni A, Rhemann C, Bleyer M, et al. Fast cost-volume filtering for visual correspondence and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2): 504-511.
[11] 赵岩,刘静,陈贺新,等. 用于单视加深度视频编码的快速立体匹配算法[J].吉林大学学报:工学版, 2012, 42(4): 1032-1036. Zhao Yan, Liu Jing, Chen He-xin, et al. Fast stereo matching algorithm used in stereo video coding based on video plus depth[J].Journal of Jilin University(Engineering and Technology Edition), 2012, 42(4): 1032-1036.
[12] 门朝光,边继龙,李香. 基于限制搜索空间的快速立体匹配方法[J].吉林大学学报:工学版, 2012, 42(2): 423-428. Men Chao-guang, Bian Ji-long, Li Xiang. Fast stereo matching algorithm based on limited search space[J].Journal of Jilin University (Engineering and Technology Edition),2012, 42(2): 423-428.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 林金花, 王延杰, 王璐, 姚禹. 全局相机姿态优化下的快速表面重建[J]. 吉林大学学报(工学版), 2018, 48(3): 909-918.
[7] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[8] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[9] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[10] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[11] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[12] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[13] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[14] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[15] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!