吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 671-677.doi: 10.13229/j.cnki.jdxbgxb201602050

• 论文 • 上一篇    下一篇

自适应解码转发系统的增强型比例选择合并器

赵大伟, 赵洪林, 马永奎, 贾敏   

  1. 哈尔滨工业大学 通信技术研究所,哈尔滨 150080
  • 收稿日期:2014-03-13 出版日期:2016-02-20 发布日期:2016-02-20
  • 通讯作者: 赵洪林(1969-),男,教授,博士生导师.研究方向:宽带抗干扰传输技术,认知无线电技术,协作通信技术.E-mail:hlzhao@hit.edu.cn E-mail:zhao_dawei@163.com
  • 作者简介:赵大伟(1984-),男,博士研究生.研究方向:协作通信技术.E-mail:zhao_dawei@163.com
  • 基金资助:
    国家自然科学基金项目(61201143); 中国空间技术研究院ITS基金项目(F-W-YY-2013-016); 中央高校基本科研业务费专项项目(HIT;IBRSEM.201309)

Enhanced scaled selection combiner for decode-and-forward systems with adaptive modulation

ZHAO Da-wei, ZHAO Hong-lin, MA Yong-kui, JIA Min   

  1. Communication Research Center, Harbin Institute of Technology, Harbin 150080, China
  • Received:2014-03-13 Online:2016-02-20 Published:2016-02-20

摘要: 针对源和中继采用不同调制阶数以提高频谱效率的解码转发协作通信系统,提出了一种增强型的比例选择合并器(ESSC).在合并信号时,ESSC通过为源-中继-目的支路设定比例系数,降低了错误传播对协作性能的影响.推导了瑞利信道下采用ESSC的解码转发系统的误比特率公式,给出了最优比例系数的计算方法.理论分析和仿真表明,ESSC能够获得接近二阶的分集增益.在此基础上,提出了一种解码转发协作系统的功率分配方案,进一步提高了协作传输的可靠性.

关键词: 通信技术, 选择合并器, 解码转发, 协作分集, 自适应调制

Abstract: An Enhanced Scaled Selection Combiner (ESSC) is proposed for Decode-and-Forward (DF) cooperative networks, where different modulation levels are adopted by the source and relay nodes to improve spectral efficiency. When the ESSC is used to combine signals from different diversity branches, the source-relay-destination branch is weighted by varying scale factors. As a result, the performance degradation caused by erroneous relaying in DF networks can be effectively mitigated by ESSC. Towards this end, the Bit-Error-Rate (BER) expression is derived for DF networks using ESSC under Rayleigh fading channels, and the scale factors of the ESSC are optimized to minimize the system BER. Theoretical analysis and simulation results demonstrate that a diversity order close to two can be achieved by ESSC. Furthermore, a power allocation scheme is proposed for DF networks based on ESSC, which can further improve the performance of cooperation.

Key words: communication technology, selection combiner, decode-and-forward, cooperative diversity, adaptive modulation

中图分类号: 

  • TN925
[1] Kalansuriya P, Soysa M, Tellambura C. Performance of a cooperative network using rate adaptation and cooperative combining[C]//2010 IEEE Wireless Communications and Networking Conference. Sydney, Australia: IEEE, 2010: 1-6.
[2] Ikki S S, Amin O, Uysal M. Performance analysis of adaptive L-QAM for opportunistic decode-and-forward relaying[C]//2010 IEEE 71st Vehicular Technology Conference. Taiwan, China: IEEE, 2010: 1-5.
[3] Altubaishi E S, Shen Xue-min. Performance analysis of decode-and-forward relaying schemes with adaptive quadrature amplitude modulation (QAM)[J]. IET Communications, 2012, 6(6): 649-658.
[4] Ma Y, Tafazolli R, Zhang Y Y, et al. Adaptive modulation for opportunistic decode-and-forward relaying[J]. IEEE Transactions on Wireless Communications, 2011, 10(7): 2017-2022.
[5] Song Wei, Ju Pei-jian, Zhou Di-zhi. Performance of cooperative relaying with adaptive modulation and selection combining[C]//2013 International Conference on Computing, Networking and Communications. San Diego, USA: IEEE, 2013: 1005-1009.
[6] Brennan D G. Linear diversity combining techniques[J]. Proceedings of the IEEE, 2003, 91(2): 331-356.
[7] Wang Tai-ran, Cano A, Giannakis G B, et al. High-performance cooperative demodulation with decode-and-forward relays[J]. IEEE Transactions on Communications, 2007, 55(7): 1427-1438.
[8] Selvaraj M D, Mallik R K. Scaled selection combining based cooperative diversity system with decode and forward relaying[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4388-4399.
[9] Sediq A B, Yanikomeroglu H. Performance analysis of selection combining of signals with different modulation levels in cooperative communications[J]. IEEE Transactions on Vehicular Technology, 2011, 60(4): 1880-1887.
[10] Goldsmith A J, Chua S G. Variable-rate variable-power MQAM for fading channels[J]. IEEE Transactions on Communications, 1997, 45(10): 1218-1230.
[11] Conti A, Win M Z, Chiani M. Slow adaptive M-QAM with diversity in fast fading and shadowing[J]. IEEE Transactions on Communications, 2007, 55(5): 895-905.
[12] Cho K, Yoon D. On the general BER expression of one-and two-dimensional amplitude modulations[J]. IEEE Transactions on Communications, 2002, 50(7): 1074-1080.
[13] Brent R P. Algorithms for Minimization without Derivatives[M]. Englewood Cliffs, New Jersey: Prentice-Hall, 1973: 61-80.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[10] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[11] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[12] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[13] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[14] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
[15] 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!