吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 1202-1208.doi: 10.13229/j.cnki.jdxbgxb201604028
王寅同, 王建东, 陈海燕
WANG Yin-tong, WANG Jian-dong, CHEN Hai-yan
摘要: 为了提高非完整标记的高维机场噪声数据的处理速度和效率,研究了时间序列降维及机场噪声中的机型识别问题。首先采用概率类和不相关判别的半监督局部Fisher方法(SLFisher)得到降维转换矩阵,再将时间序列数据由高维空间映射到低维空间,最后在低维数据上进行k最近邻分类(kNN)。在国内某机场的实测噪声数据上的实验结果表明,SLFisher降维后机场噪声事件数据的机型识别效果取得显著提升。
中图分类号:
[1] Fu T. A review on time series data mining[J]. Engineering Applications of Artificial Intelligence,2011,24(1):164-181. [2] Batista G E,Wang X,Keogh E J. A complexity-invariant distance measure for time series[C]∥Proceedings of the 2011 SIAM International Conference on Data Mining,2011,11:699-710. [3] Esling P,Agon C,Time-series data mining[J]. ACM Computing Surveys (CSUR),2012,45(1):1-12. [4] Wang X,Mueen A,Ding H,et al. Experimental comparison of representation methods and distance measures for time series data[J]. Data Mining and Knowledge Discovery,2013,26(2):275-309. [5] 吴红花,刘国华,王伟. 不确定时间序列的相似性匹配问题[J]. 计算机研究与发展,2014,51(8):1802-1810. Wu Hong-hua,Liu Guo-hua,Wang Wei. Similarity matching for uncertain time series[J]. Journal of Computer Research and Development,2014,51(8):1802-1810. [6] Scott S,Varian H. Predicting the present with bayesian structural time series[J]. International Journal of Mathematical Modelling and Numerical Optimisation,2014,5(1):4-23. [7] Keogh E,Chakrabarti K,Pazzani M,et al. Dimensionality reduction for fast similarity search in large time series databases[J]. Knowledge and Information Systems,2001,3(3):263-286. [8] Chakrabarti K,Keogh E,Mehrotra S,et al. Locally adaptive dimensionality reduction for indexing large time series databases[J]. ACM Transactions on Database Systems,2002,27(2):188-228. [9] Xing E P,Jordan M I,Russell S,et al. Distance metric learning with application to clustering with side-information[J].Advances in Neural Information Processing Systems,2003:15:505-512. [10] 邹朋成,王建东,杨国庆,等. 辅助信息自动生成的时间序列距离度量学习[J]. 软件学报,2013,24(11):2642-2655. Zou Peng-cheng,Wang Jian-dong,Yang Guo-qing,et al. Distance metric learning based on side information autogeneration for time series[J]. Journal of Software,2013,24(11):2642-2655. [11] Jolliffe I. Principal Component Analysis[M].USA: John Wiley & Sons,2005. [12] Abdi H,Williams L J. Principal component analysis[J]. Wiley interdisciplinary reviews:computational statistics,2010,2(4):433-459. [13] Lin J,Keogh E,Lonardi S,et al. A symbolic representation of time series, with implications for streaming algorithms[C]∥ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery,San Diego,USA,2003:2-11. [14] Lin J,Keogh E,Wei L,et al. Experiencing SAX:a novel symbolic representation of time series[J]. Data Mining and Knowledge Discovery,2007,15(2):107-144. [15] Ahmed A,Bakar A,Hamdan A. Harmony search algorithm for optimal word size in symbolic time series representation[C]∥IEEE 2011 3rd Conference on Data Mining and Optimization,Bangi,Malaysia,2011:57-62. [16] Park S,Kim S W,Chu W W. Segment-based approach for subsequence searches in sequence databases[C]∥Proceedings of the 2001 ACM Symposium on Applied Computing,New York,USA,2001:248-252. [17] 王寅同,王建东,陈海燕,等. 基于概率类和不相关判别的半监督局部Fisher方法[J]. 控制与决策,2015,30(1):32-38. Wang Yin-tong,Wang Jian-dong,Chen Hai-yan,et al. Semi-supervised local Fisher method based on probability class and uncorrelated discriminant[J]. Control and Decision,2015,30(1):32-38. [18] Fisher R. The Use of multiple measurements in taxonomic problems[J]. Annals of Eugenics,1936,7(2):179-188. [19] Sakoe H,Chiba S. Dynamic programming algorithm optimization for spoken word recognition[C]∥IEEE Transactioin on Acoustics,Speech and Signal Processing,1978,26(1):43-49. [20] Xi X,Keogh E,Shelton C,et al. Fast time series classification using numerosity reduction[C]∥In Process of the International Conference on Machine Learning,New York,USA,2006:1033-1040. [21] Rakthanmanon T,Campana B J,Mueen A,et al. Searching and mining trillions of time series subsequences under dynamic time warping[C]∥In Process of the International Conference on Knowledge Discovery and Data Mining,New York,USA,2012:262-270. [22] Keogh E. Exact indexing of dynamic time warping[J].Knowledge and Information Systems,2005:7(3):358-386. [23] Shimodaira H,Noma K,Nakai M,et al. Dynamic time-alignment kernel in support vector machine[J].Advances in Neural Information Processing Systems,2002,14:921-928. [24] Cuturi M,Vert J P,Birkenes O,et al. A kernel for time series based on global alignments[C]∥IEEE Computer Society on Acoustics,Speech and Signal Processing,Honolulu,HI,2007:413-416. [25] Cuturi M. Fast global alignment kernels[C]∥In Process of the International Conference on Machine Learning,ACM,Bellevue,USA,2011:929-936. |
[1] | 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577. |
[2] | 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585. |
[3] | 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205. |
[4] | 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213. |
[5] | 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865. |
[6] | 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873. |
[7] | 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881. |
[8] | 刘舒, 姜琦刚, 朱航, 李晓东. 基于Hyb-F组合滤波算法的向海自然保护区NDVI时间序列重构[J]. 吉林大学学报(工学版), 2018, 48(3): 957-967. |
[9] | 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532. |
[10] | 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538. |
[11] | 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544. |
[12] | 万平, 吴超仲, 林英姿, 马晓凤. 基于驾驶行为多元时间序列特征的愤怒驾驶状态检测[J]. 吉林大学学报(工学版), 2017, 47(5): 1426-1435. |
[13] | 曲慧雁, 赵伟, 秦爱红. 基于优化算子的快速碰撞检测算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603. |
[14] | 李嘉菲, 孙小玉. 基于谱分解的不确定数据聚类方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611. |
[15] | 邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋. 无平衡点分数阶混沌系统全状态自适应控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230. |
|