吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (1): 137-144.doi: 10.13229/j.cnki.jdxbgxb201701020

• 论文 • 上一篇    下一篇

串并混联机床几何误差建模与实验

曲兴田, 赵永兵, 刘海忠, 王昕, 杨旭, 陈行德   

  1. 吉林大学 机械科学与工程学院,长春 130022
  • 收稿日期:2015-12-07 出版日期:2017-01-20 发布日期:2017-01-20
  • 作者简介:曲兴田(1962-),男,教授.研究方向:智能精密制造.E-mail:quxt@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51135006).

Modeling and experiment of spatial geometric errors of hybrid serial-parallel machine tool

QU Xing-tian, ZHAO Yong-bing, LIU Hai-zhong, WANG Xin, YANG Xu, CHEN Hang-de   

  1. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2015-12-07 Online:2017-01-20 Published:2017-01-20

摘要: 以多体系统理论为基础,研究了串并混联机床的几何误差。考虑各运动轴的定位误差、直线度误差、角度误差以及垂直度误差的综合作用,提出一种机床综合误差建模方法。通过对该机床各部件拓扑结构进行抽象化描述,推导出混联机床两相邻体间相对运动的特征矩阵,建立了混联机床的整机综合误差模型。利用激光干涉仪对XY轴多项几何误差进行测量,并将测得的几何误差带入综合误差模型。通过分析所测的各项几何误差以及综合误差分布和演变规律发现:XY轴定位误差对整机综合误差的影响最大,直线度误差次之,角度误差影响最小;在精度要求不高的情况下,角度误差对综合误差的影响可忽略。

关键词: 机械制造自动化, 综合误差模型, 几何误差, 串并混联机床

Abstract: The spatial geometric error of hybrid serial-parallel machine tool is modeled and investigated. This synthesis error model is based on multi-body system and the consideration of the combined effect of positioning errors, straightness errors, squareness errors and angular errors of each axis. With substantial data measured by laser interferometer, the distribution maps of some errors are drawn. By choosing a planned curve on the surface of workpiece and moving each axis with errors, the spatial geometric error appears and is illustrated on Matlab. Further, by decomposing the spatial geometric errors along each axis of spatial coordinate and comparing with position errors of the corresponding axis, a conclusion is drawn that both errors have close value and the same distribution trend. The positioning errors have the greatest impact on the synthesis error, followed by the straightness errors. The impact of the angular errors on the synthesis error can be ignored.

Key words: mechanical manufacturing automation, synthesis error model, geometric error, hybrid serial-parallel machine tool

中图分类号: 

  • TH161
[1] Ramesh R, Mannan M A, Poo A N. Error compensation in machine tools—a review part I: geometric, cutting-force induced and fixture-dependent errors[J]. International Journal of Machine Tools & Manufacture, 2000, 40(9):1235-1256.
[2] Wahid Khan Abdul, Chen Wu-yi. Systematic geometric error modeling for workspace volumetric calibration of 5-axis turbine blade grinding machine[J]. Chinese Journal of Aeronautics, 2010, 23(5):604-615.
[3] 韩飞飞,赵继,张雷,等. 数控机床几何精度综合解析与试验研究[J]. 机械工程学报,2012,48(21):141-147.
Han Fei-fei, Zhao Ji, Zhang Lei, et al. Comprehensive analysis and experimental study on the geometric accuracy of CNC machine tools[J]. Journal of Mechanical Engineering, 2012, 48(21):141-147.
[4] 朱建忠,李圣怡,黄凯. 超精密机床变分法精度分析及其应用[J]. 国防科技大学学报,1997,19(2):36-40.
Zhu Jian-zhong, Li Sheng-yi, Huang Kai. Variational method of ultra-precision machine tool accuracy analysis and its application[J]. Journal of National University of Defense Technology, 1997, 19(2):36-40.
[5] Chen G, Liang Y, Sun Y, et al. Volumetric error modeling and sensitivity analysis for designing a five-axis ultra-precision machine tool[J]. International Journal of Advanced Manufacturing Technology, 2013, 68(9-12):2525-2534.
[6] Cui G, Lu Y, Li J, et al. Geometric error compensation software system for CNC machine tools based on NC program reconstructing[J]. International Journal of Advanced Manufacturing Technology, 2012, 63(1-4):169-180.
[7] Chen J, Lin S, He B. Geometric error compensation for multi-axis CNC machines based on differential transformation[J]. International Journal of Advanced Manufacturing Technology, 2014, 71(1-4):635-642.
[8] Fu G, Fu J, Xu Y, et al. Product of exponential model for geometric errorintegration of multi-axis machine tools[J]. International Journal of Advanced Manufacturing Technology, 2014, 71(9-12):1653-1667.
[9] 王维,杨建国,姚晓栋,等. 数控机床几何误差和热误差综合建模及实时补偿[J]. 机械工程学报, 2012, 48(7):165-170.
Wang Wei, Yang Jian-guo, Yao Xiao-dong, et al. Comprehensive modeling and real-time compensation of geometric error and thermal error of CNC machine tools[J]. Journal of Mechanical Engineering, 2012, 48(7):165-170.
[10] 孟婥, 车仁生. 并联六坐标测量机的误差模型和误差补偿[J]. 哈尔滨工业大学学报, 2004, 36(3):317-320.
Meng Chuo, Che Ren-sheng. Error model and error compensation of six-freedom-degree parallel mechanism CMM[J]. Journal of Harbin Institute of Technology, 2004, 36(3):317-320.
[11] 程刚,葛世荣. 3-RPS对称并联式机械腿误差模型及分析[J]. 中国矿业大学学报,2009,38(1):50-55.
Cheng Gang, Ge Shi-rong. Error model and analysis of 3-RPS symmetrical parallel robot leg with three degree-of-freedom[J]. Journal of China University of Mining & Technology, 2009,38(1):50-55.
[12] Fan Kuang-chao, Wang Hai, Zhao Jun-wei, et al. Sensitivity analysis of the 3-PRS parallel kinematic spindle platform of a serial-parallel machine tool[J]. International Journal of Machine Tool & Manufacture,2003,43 (15):1561-1569.
[13] 黄田,李亚,李思维,等. 一种三自由度并联机构几何误差建模、灵敏度分析及装配工艺设计[J]. 中国科学(E辑), 2002, 32(5):628-635.
Huang Tian, Li Ya, Li Si-wei, et al. Modeling, sensitivity analysis and assembly process design for a 3-DOF parallel mechanism[J]. Science in China(Series E), 2002, 32(5):628-635.
[14] 李新友,陈五一,韩先国. 基于正交设计的 3-RPS 并联机构精度分析与综合[J]. 北京航空航天大学学报,2011,37(8): 979-984.
Li Xin-you, Chen Wu-yi, Han Xian-guo. Accuracy analysis and synthesis of 3-RPS parallel machine based on orthogonal design[J]. Journal of Beijing University Aeronautics and Astronautics,2011, 37(8): 979-984.
[15] Sun Tao, Song Yi-min, Li Yong-gang. Separation of comprehensive geometrical errors of a 3-DOF parallel manipulator based on jacobian matrix and its sensitivity analysis with monte-carlo method[J]. Chinese Journal of Mechanical Engineering, 2011, 24(3): 406-413.
[16] Weikert S. R-test, a new device for accuracy measurements on five axis machine tools[J]. CIRP Annals-Manufacturing Technology, 2013, 53(1):429-432.
[17] Hong C F, Ibaraki S. Non-contact R-test with laser displacement sensors for error calibration of five-axis machine tools[J]. Precision Engineering Journal of the International Societies For Precision Engineering and Nanotechnology, 2013, 37(1): 159-171.
[18] Lee K I, Yang S H. Robust measurement method and uncertainty analysis for position-independent geometric errors of a rotary-axis using a double ball-bar[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(2): 231-239.
[19] Zhang G, Ouyang R, Lu B, et al. A displacement method for machine geometry calibration[J]. CIRP Annals Manufacturing Technology, 1988, 37(1):515-518.
[20] Chen G, Yuan J, Ni J. A displacement measurement approach for machine geometric error assessment[J]. International Journal of Machine Tools & Manufacture, 2001, 41(1):149-161.
[21] Wang C. Laser vector measurement technique for the determination and compensation of volumetric positioning errors[J]. Basic Theory, Review of Scientific Instruments, 2000, 71(10):3933-3937.
[22] Cui C, Feng Q, Zhang B, et al. System for simultaneously measuring 6 DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser[J]. Optics Express, 2016, 24(6): 6735-6748.
[23] Zhong G, Wang C, Yang S, et al. Position geometric error modeling, identification and compensation for large 5-axis machining center prototype[J]. International Journal of Machine Tools & Manufacture, 2015, 89: 142-150.
[1] 任书楠, 杨向东, 王国磊, 刘志, 陈恳. 大部件喷涂中的移动机械臂站位规划[J]. 吉林大学学报(工学版), 2016, 46(6): 1995-2002.
[2] 沈志煌, 姚斌, 陆如升, 冯伟, 张祥雷, 王萌萌. 精密螺杆转子齿廓成形磨削的误差分析[J]. 吉林大学学报(工学版), 2016, 46(3): 831-838.
[3] 王延忠, 侯良威, 吕庆军, 赵兴福, 吴灿辉. 基于总线控制的面齿轮复杂曲面加工技术[J]. 吉林大学学报(工学版), 2015, 45(6): 1836-1843.
[4] 陈健, 葛连正, 李瑞峰. 考虑摩擦特性的机器人柔性关节鲁棒控制器设计[J]. 吉林大学学报(工学版), 2015, 45(6): 1906-1912.
[5] 郭黎滨, 张彬, 崔海, 张志航. 微细电火花线切割表面三维粗糙度的结构性参数[J]. 吉林大学学报(工学版), 2015, 45(3): 851-856.
[6] 赵帼娟, 张雷, 卢磊, 韩飞飞, 赵继. 四轴抛光平台综合误差建模及分析[J]. 吉林大学学报(工学版), 2014, 44(6): 1676-1683.
[7] 王继利, 杨兆军, 李国发, 朱晓翠. EM算法的多重威布尔可靠性建模[J]. 吉林大学学报(工学版), 2014, 44(4): 1010-1015.
[8] 杨兆军,王继利,李国发,张新戈. 冲压机床可靠性增长的模糊层次分析预测方法[J]. 吉林大学学报(工学版), 2014, 44(3): 686-691.
[9] 佟金, 王亚辉, 卢纪生, 张书军, 陈东辉. 基于CCD的大型台阶轴锻件同轴度测量[J]. 吉林大学学报(工学版), 2013, 43(04): 945-950.
[10] 张雷, 赵云伟, 杨卓, 赵继. 电流变抛光液剪切屈服特性[J]. , 2012, 42(05): 1145-1150.
[11] 史永杰, 郑堤, 胡利永, 王龙山. 非球面件数控研抛力、研抛工具位置和姿态解耦技术[J]. 吉林大学学报(工学版), 2012, 42(01): 116-121.
[12] 张英芝1,郑锐2,申桂香1,王志琼1,李怀洋1,郑珊1. 基于Copula理论的数控装备故障相关性[J]. 吉林大学学报(工学版), 2011, 41(6): 1636-1640.
[13] 任迪, 王祖温, 包钢, 杨庆俊. 新型高刚度静压气体球轴承的静态特性[J]. 吉林大学学报(工学版), 2010, 40(06): 1599-1603.
[14] 孔繁森, 刘鹏, 曹阳华, 石金丹. 变速箱厂生产作业环境的模糊综合评价[J]. 吉林大学学报(工学版), 2010, 40(02): 475-0479.
[15] 赵扬, 赵继, 张雷, 齐立哲. 基于逆向工程的机器人磨削叶片[J]. 吉林大学学报(工学版), 2009, 39(05): 1176-1180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!