吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 789-795.doi: 10.13229/j.cnki.jdxbgxb201703014
张云龙1, 刘占莹2, 吴春利3, 王静1
ZHANG Yun-long1, LIU Zhan-ying2, WU Chun-li3, WANG Jing1
摘要: 为了准确分析钢-混凝土组合梁的静力和动力响应,基于接触理论和有限单元法的基本思想,提出了组合梁单元的合理位移函数,推导了考虑剪切滑移效应的组合梁单元刚度方程,并结合动力学经典理论,给出了组合梁无阻尼状态下考虑交界面剪切滑移效应的各阶自振频率和振型计算方法。通过具体算例分析了钢-混凝土简支组合梁在竖向荷载作用下的挠度和交界面的剪切滑移应变差沿梁长的分布形态,并与试验结果进行了对比,结果表明:有限元解与试验结果基本一致,说明该有限元解是合理、可信的。利用上述刚度矩阵,基于经典动力学理论,计算了组合梁在考虑剪切滑移效应时的频率和振型,并与完全相互作用的结果进行了对比分析,说明在进行动力响应计算时应考虑剪切滑移的影响,为实际工程的设计提供了一种可靠的理论计算方法。
中图分类号:
[1] 范旭红,石启印,马波. 钢-混凝土组合梁的研究与展望[J]. 江苏大学学报,2004,25(1):89-92. Fan Xu-hong, Shi Qi-yin, Ma Bo. Development and perspective of steel-concrete composite beams[J]. Journal of Jiangsu University,2004,25(1):89-92. [2] 陈宝春,牟廷敏,陈宜言,等. 我国钢-混凝土组合结构桥梁研究进展及工程应用[J]. 建筑结构学报,2013,34(增刊1):1-10. Chen Bao-chun, Mu Ting-min, Chen Yi-yan, et al. State-of-the-art of research and engineering application of steel-concrete composite beidges in China[J]. Journal of Building Strctures,2013,34(Sup.1):1-10. [3] 聂建国,余志武. 钢-混凝土组合梁在我国的研究及应用[J]. 土木工程学报,1999,32(2):3-8. Nie Jian-guo, Yu Zhi-wu. Research and practive of composite steel-concrete beams in China[J]. China Civil Engineering Journal,1999,32(2):3-8. [4] 聂建国,沈聚敏. 滑移效应对钢-混凝土组合梁弯曲强度的影响及其计算[J]. 土木工程学报,1997,30(1):31-36. Nie Jian-guo, Shen Ju-min. Slip effect on strength of composite steel-concrete beams[J]. China Civil Engineering Journal,1997,30(1):31-36. [5] 聂建国,沈聚敏,余志武. 考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J]. 土木工程学报,1995,28(6):11-17. Nie Jian-guo, Shen Ju-min, Yu Zhi-wu. A reduced rigidity method for calculating deformation of composite steel-concrete beams[J]. China Civil Engineering Journal,1995,28(6):11-17. [6] 聂建国,陶慕轩. 体外预应力钢-混凝土组合梁受力性能的研究现状与展望[J]. 工程力学,2013,34(增刊2):129-141. Nie Jian-guo, Tao Mu-xuan. Research status and perspective on externally prestressed steel-concrete composite beams[J]. Engineering Mechanics,2013,34(Sup.2):129-141. [7] 刘寒冰,刘天明,张云龙. 钢-混凝土组合连续梁抗弯性能[J]. 吉林大学学报:工学版,2009,39(6):1486-1491. Liu Han-bing,Liu Tian-ming,Zhang Yun-long. Bending resistance of steel-concrete composite continuous beam[J]. Journal of Jilin University (Engineering and Technology Edition),2009,39(6):1486-1491. [8] Ranzi G, Zona A. A steel-concrete composite beam model with partial interaction including the shear deformability of the steel component[J]. Engineering Structures,2007,29(11):3026-3041. [9] Fragiacom M, Amaido C, Macorini L. Finite element model for collapse and long-term analysis of steel-concrete composite beams[J]. Journal of Structural Engineering,2004,130(3):389-497. [10] Salari M R, Spacone E, Shing P B, et al. Nonlinear analysis of composite beams with deformable shear connectors[J]. Journal of Structural Engineering,1998,124(10):1148-1158. [11] Sebastion W M, Connel R. Nonlinear FE analysis of steel-concrete composite[J]. Journal of Structural Engineering,2000,126(6):662-674. [12] 周旺保,蒋丽忠,李书进. 钢-混凝土组合箱梁弯矩曲率恢复力模型研究[J]. 建筑结构学报,2015,36(1):78-84. Zhou Wang-bao,Jiang Li-zhong,Li Shu-jin. Moment-curvature restoring force model research of steel-Concrete composite box-beams[J]. Journal of Building Structures,2015,36(1):78-84. [13] 侯忠明,夏禾,王元清,等. 钢-混凝土组合梁动力折减系数研究[J]. 振动与冲击,2015,34(4):74-81. Hou Zhong-ming, Xia He, Wang Yuan-qing, et al. Dynamic reduction coefficients for a steel-concrete composite beam[J]. Journal of Vibration and Shock,2015,34(4):74-81. [14] 戚菁菁,蒋丽忠,张传增,等. 界面滑移、竖向掀起及剪切变形对钢-混凝土组合连续梁动力性能的影响[J]. 中南大学学报,2010,41(6):2334-2343. Qi Jing-jing, Jiang Li-zhong, Zhang Chuan-zeng, et al. Effects of interface slip, vertical uplift and shear deformation on dynamic behavior of steel-concrete composite continuous beams[J]. Journal of Central South University,2010,41(6):2334-2343. [15] Banerjee J R. Frequency equation and mode shape formulae for composite Timoshenko beams[J]. Composite Structures,2001,51(4):381-388. [16] 沈旭栋,陈伟球,徐荣桥. 有轴力的部分作用组合梁的动力分析[J]. 振动工程学报,2012,25(5):514-520. Shen Xu-dong,Chen Wei-qiu,Xu Rong-qiao. Dynamic analysis of partial-interactive composite beam with axial force[J]. Journal of Vibration Engineering,2012,25(5):514-520. [17] 王景全,殷惠光,张书兵,等. 钢-混凝土组合梁考虑界面滑移的振动模态试验研究[J]. 建筑结构学报,2016,37(2):142-149. Wang Jing-quan,Yin Hui-guang,Zhang Shu-bing,et al. Experimental investigation on dynamic properties of steel-concrete composite beams considering effect of interfcial slip[J]. Journal of Building Structures,2013,37(2):142-149. [18] 张书兵,王景全,李明,等. 考虑界面滑移效应的组合梁自振频率计算的修正折减刚度法[J]. 土木工程学报,2015,48(12):41-49. Zhang Shu-bing, Wang Jing-quan, Li Ming, et al. A modified stiffness reduction method for calculating the natural frequencies of composite beams considering the effect of interfacial slippage[J]. China Civil Engineering Journal, 2015,48(12):41-49. [19] 张云龙. 体外预应力钢-混凝土组合梁结构行为的实验研究[D]. 长春:吉林大学交通学院,2005. Zhang Yun-long. Test study of external prestressed composite steel-concrete beams structure[D]. Changchun:College of Transportation, Jilin University,2005. |
[1] | 惠迎新,毛明杰,刘海峰,张尚荣. 跨断层桥梁结构地震响应影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1725-1734. |
[2] | 尼颖升,孙启鑫,马晔,徐栋,刘超. 基于空间网格分析的多箱室波形钢腹板组合梁腹板剪力分配[J]. 吉林大学学报(工学版), 2018, 48(6): 1735-1746. |
[3] | 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472. |
[4] | 魏志刚, 刘寒冰, 时成林, 宫亚峰. 考虑桥面铺装作用的简支梁桥横向分布系数计算[J]. 吉林大学学报(工学版), 2018, 48(1): 105-112. |
[5] | 宫亚峰, 何钰龙, 谭国金, 申杨凡. 三跨独柱连续曲线梁桥抗倾覆稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(1): 133-140. |
[6] | 尼颖升, 孙启鑫, 马晔, 徐栋. 基于拉应力域的波形钢腹板组合梁承载力配筋计算[J]. 吉林大学学报(工学版), 2018, 48(1): 148-158. |
[7] | 魏志刚, 时成林, 刘寒冰, 张云龙. 车辆作用下钢-混凝土组合简支梁动力特性[J]. 吉林大学学报(工学版), 2017, 47(6): 1744-1752. |
[8] | 尼颖升, 马晔, 徐栋, 李金凯. 波纹钢腹板斜拉桥剪力滞效应空间网格分析方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464. |
[9] | 刘宇, 李鹏飞, 张义民. 紫铜薄壁零件微铣加工变形分析及预测[J]. 吉林大学学报(工学版), 2017, 47(3): 844-849. |
[10] | 刘寒冰, 时成林, 谭国金. 考虑剪切滑移效应的叠合梁有限元解[J]. 吉林大学学报(工学版), 2016, 46(3): 792-797. |
[11] | 谭国金, 刘子煜, 魏海斌, 王龙林. 偏心直线预应力筋简支梁自振频率计算方法[J]. 吉林大学学报(工学版), 2016, 46(3): 798-803. |
[12] | 曹珊珊, 雷俊卿. 考虑区间不确定性的钢结构疲劳寿命分析[J]. 吉林大学学报(工学版), 2016, 46(3): 804-810. |
[13] | 郭学东, 马立军, 张云龙. 集中力作用下考虑剪切滑移效应的双层结合面组合梁解析解[J]. 吉林大学学报(工学版), 2016, 46(2): 432-438. |
[14] | 侯忠明, 王元清, 夏禾, 张天申. 移动荷载作用下的钢-混简支结合梁动力响应[J]. 吉林大学学报(工学版), 2015, 45(5): 1420-1427. |
[15] | 张彦玲, 孙瞳, 侯忠明, 李运生. 隔板式钢-混凝土曲线组合梁弯扭性能[J]. 吉林大学学报(工学版), 2015, 45(4): 1107-1114. |
|