吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 545-550.doi: 10.13229/j.cnki.jdxbgxb20161293

• • 上一篇    下一篇

面向对象软件系统演化模型

马健1, 樊建平2, 刘峰1, 李红辉1   

  1. 1.北京交通大学 计算机与信息技术学院,北京 100044;
    2.中国科学院 深圳先进技术研究院,广东 深圳 518055
  • 收稿日期:2016-11-29 出版日期:2018-03-01 发布日期:2018-03-01
  • 作者简介:马健(1985-),女,博士研究生.研究方向:复杂网络. E-mail:13112083@bjtu.edu.cn
  • 基金资助:
    “863”国家高技术研究发展计划项目(2015AA043701)

The evolution model of objective-oriented software system

MA Jian1, FAN Jian-ping2, LIU Feng1, LI Hong-hui1   

  1. 1.School of Computer Science and Information Technology, Beijing Jiaotong University, Beijing 100044, China;
    2.Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
  • Received:2016-11-29 Online:2018-03-01 Published:2018-03-01

摘要: 提出了一种基于局域事件的软件网络演化模型,该模型以面向对象软件系统为研究对象,对BA无标度网络模型进行改进,增加了添加节点、添加边、删除边和边的重连等局域事件,模拟软件网络的演化过程。实验结果表明,该模型演化生成网络的度分布服从衰减幂律分布,模型能较好地描述真实软件的演化增长情况,并且与真实软件网络的度分布基本一致,仿真实验验证了该模型的有效性。同时,该模型可以对面向对象软件网络结构进行模拟和评价。

关键词: 计算机软件, 软件演化, 无标度网络, 度分布, 复杂网络

Abstract: An evolution model of software networks based on local events is proposed. The model uses objective-oriented software systems as research object and improves the BA scale-free network model. By adding local events, such as addition of nodes, addition of edges, removal of edges and rewriting edges, the proposed model simulates the evolution of software networks. Simulation results show that the degree distribution of the network generated by this model follows power law distribution. The model can simulate the evolution process of real software, and the degree distribution is in agreement with that of real software network, which validates the proposed model. Meanwhile, the proposed model can simulate and evaluate the structures of object-oriented software networks.

Key words: computer software, software evolution, scale-free network, degree distribution, complex network

中图分类号: 

  • TP311
[1] 郭玉泉,李雄飞.复杂网络社区的分形聚类检测方法[J].吉林大学学报:工学版,2016,46(5):1633-1638.
Guo Yu-quan,Li Xiong-fei.Fractal clustering method for uncovering community of complex network[J].Journal of Jinlin University(Engineering and Technology Edition),2016,46(5):1633-1638.
[2] Bhattacharya P, Iliofotou M, Neamtiu I, et al. Graph-based analysis and prediction for software evolution[C]∥ Proceedings of the 34th International Conference on Software Engineering(ICSE). Zuricah: ACM, 2012:419-429.
[3] Chong C Y, Lee S P. Analyzing maintainability and reliability of object-oriented software using weighted complex network[J]. Journal of Systems and Software, 2015, 110: 28-53.
[4] Chaikalis T, Chatzigeorgiou A. Forecasting java software evolution trends employing network models[J]. IEEE Transactions on Software Engineering, 2015, 41(6): 582-602.
[5] Turnu I, Concas G, Marchesi M, et al. The fractal dimension of software networks as a global quality metric[J]. Information Sciences, 2013, 245(10): 290-303.
[6] Barabási A L, Albert R.Emergence of scaling in random networks[J].Science,1999,286(5439):509-512.
[7] alverde S, Solé R V. Network motifs in computational graphs: a case study in software architecture[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics,2005,72(2):026107.
[8] Myers C R. Software systems as complex networks: structure, function, and evolvability of software collaboration graphs[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2003, 68(2): 046116.
[9] Dorogovtsev S N, Mendes J F F. Evolution of reference networks with aging[J]. Physical Review E Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62(2): 1842-1845.
[10] Zheng X L, Zeng D, Li H, et al. Analyzing open-source software systems as complex networks[J]. Physica A Statistical Mechanics and Its Applications, 2008, 387(24): 6190-6200.
[11] Li H, Zhao H, Cai W, et al. A modular attachment mechanism for software network evolution[J]. Physica A Statistical Mechanics and Its Applications, 2013, 392(9): 2025-2037.
[12] 张锡哲,吕天阳,张斌.基于服务交互行为的复杂服务协同网络建模[J]. 软件学报, 2016, 27(2): 231-246.
Zhang Xi-zhe, Lü Tian-yang, Zhang Bin. Modeling complex collaboration network for service-oriented software based on execution behaviors[J]. Journal of Software, 2016, 27(2): 231-246.
[13] Dabrowski R, Stencel K, Timoszuk G. Software is a directed multigraph[C]∥Proceedings of the 5th European conference on Software architecture. Essen: Spring, 2011:360-369.
[14] Valverde S, Cancho R F I, Sole R V. Scale-free networks from optimal design[J]. Europhysics Letters, 2002, 60(4): 512-517.
[15] Barabási A L, Alert R, Jeong H. Mean-field theory for scale-free random networks[J]. Physica A Statistical Mechanics and Its Applications, 1999, 272(1): 173-187.
[1] 罗养霞, 郭晔. 基于数据依赖特征的软件识别[J]. 吉林大学学报(工学版), 2017, 47(6): 1894-1902.
[2] 应欢, 王东辉, 武成岗, 王喆, 唐博文, 李建军. 适用于商用系统环境的低开销确定性重放技术[J]. 吉林大学学报(工学版), 2017, 47(1): 208-217.
[3] 时小虎, 冯国香, 李牧, 李瑛, 吴春国. 基于密度峰值的重叠社区发现算法[J]. 吉林大学学报(工学版), 2017, 47(1): 242-248.
[4] 李勇, 黄志球, 王勇, 房丙午. 基于多源数据的跨项目软件缺陷预测[J]. 吉林大学学报(工学版), 2016, 46(6): 2034-2041.
[5] 黄岚, 李玉, 王贵参, 王岩. 基于点距离和密度峰值聚类的社区发现方法[J]. 吉林大学学报(工学版), 2016, 46(6): 2042-2051.
[6] 郭玉泉, 李雄飞. 复杂网络社区的分形聚类检测方法[J]. 吉林大学学报(工学版), 2016, 46(5): 1633-1638.
[7] 王念滨, 祝官文, 周连科, 王红卫. 支持高效路径查询的数据空间索引方法[J]. 吉林大学学报(工学版), 2016, 46(3): 911-916.
[8] 孙万臣, 刘高, 郭亮, 杜家坤, 肖森林, 李国良. 微粒捕集器对高压共轨柴油机超细微粒捕集特性[J]. 吉林大学学报(工学版), 2016, 46(1): 133-139.
[9] 特日跟, 江晟, 李雄飞, 李军. 基于整数数据的文档压缩编码方案[J]. 吉林大学学报(工学版), 2016, 46(1): 228-234.
[10] 康辉, 王家琦, 梅芳. 基于Pi演算的并行编程语言[J]. 吉林大学学报(工学版), 2016, 46(1): 235-241.
[11] 陈鹏飞, 田地, 杨光. 基于MVC架构的LIBS软件设计与实现[J]. 吉林大学学报(工学版), 2016, 46(1): 242-245.
[12] 刘磊, 王燕燕, 申春, 李玉祥, 刘雷. Bellman-Ford算法性能可移植的GPU并行优化[J]. 吉林大学学报(工学版), 2015, 45(5): 1559-1564.
[13] 冯晓宁, 王卓, 张旭. 基于L-π演算的WSN路由协议形式化方法[J]. 吉林大学学报(工学版), 2015, 45(5): 1565-1571.
[14] 李明哲, 王劲林, 陈晓, 陈君. 基于网络处理器的流媒体应用架构模型(VPL)[J]. 吉林大学学报(工学版), 2015, 45(5): 1572-1580.
[15] 王克朝, 王甜甜, 苏小红, 马培军. 基于频繁闭合序列模式挖掘的学生程序雷同检测[J]. 吉林大学学报(工学版), 2015, 45(4): 1260-1265.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!