吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 539-544.doi: 10.13229/j.cnki.jdxbgxb20170051
刘雪娟, 袁家斌, 许娟, 段博佳
LIU Xue-juan, YUAN Jia-bin, XU Juan, DUAN Bo-jia
摘要: 为提高经典k-means算法的计算效率,引入量子计算理论得到量子k-means算法。先将聚类数据和k个聚类中心制备成量子态,并行计算其相似度,接着利用相位估计算法将相似度信息保存到量子比特中,然后利用最小值查找量子算法查找最相似的聚类中心点。对比两种算法的复杂度可知,在一定条件下,相对经典算法而言,量子k-means算法的时间复杂度降低,空间复杂度得到指数级降低。
中图分类号:
[1] 王书浩, 龙桂鲁. 大数据与量子计算[J].科学通报, 2015,60 (5): 499-508. Wang Shu-hao, Long Gui-lu. Big data and quantum computation[J]. Chin Sci Bull, 2015, 60(5):499-508. [2] Anguita D, Ridella S, Rivieccio F, et al. Quantum optimization for training support vector machines[J]. Neural Networks, 2003, 16(5/6): 763-770. [3] Grover L K. A fast quantum mechanical algorithm for database search[C] ∥Proc 28th Ann ACM Symp Theory of Computing, New York, USA,1996:212-219. [4] Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for big data classification[J]. Physical Review Letters, 2014, 113(13): 130503. [5] Lu S,Braunstein S L. Quantum decision tree classifier[J]. Quantum Information Processing, 2014, 13(3): 757-770. [6] 阮越, 陈汉武, 刘志昊, 等. 量子主成分分析算法[J]. 计算机学报, 2014, 37(3): 666-676. Ruan Yue, Chen Han-wu, Liu Zhi-hao, et al. Quantum principal component analysis algorithm[J]. Chinese Journal of Computers, 2014,37(3):666-676. [7] 徐永振, 郭躬德, 蔡彬彬, 等. 基于一维三态量子游走的量子聚类算法[J]. 计算机科学, 2016, 43(3): 80-83. Xu Yong-zhen, Guo Gong-de, Cai Bin-bin, et al. Quantum clustering algorithm based on one-dimensional three-state quantum walk[J]. Computer Science, 2016, 43(3): 80-83. [8] Elhaddad M E, Mohammed S A O. Analysing the impact of quantum computing using system dynamics[C]∥Engineering & MIS (ICEMIS), IEEE, 2016: 1-5. [9] Jain A K,Murty M N, Flynn P J. Data clustering: a review[J]. ACM Computing Surveys (CSUR), 1999, 31(3): 264-323. [10] 许美慧,尹建芹,张玲,等. 可处理暗腔的日冕物质抛射检测新方法[J]. 光学精密工程, 2016, 24(10s):591-599. Xu Mei-hui, Yin Jian-qin, Zhang Ling, et al. New detection method for coronal mass ejection capable of dark cavity processing[J]. Optics and Precision Engineering, 2016, 24(10s): 591-599. [11] 王丽. 融合底层和中层字典特征的行人重识别[J]. 中国光学, 2016, 9(5): 540-546. Wang Li. Pedestrian re-identification based on fusing low-level and mid-level features[J]. Chinese Optics, 2016, 9(5): 540-546. [12] Wu X, Kumar V, Quinlan J R, et al. Top 10 algorithms in data mining[J]. Knowledge and Information Systems, 2008, 14(1):1-37. [13] 秦大同, 詹森,漆正刚,等. 基于 K-均值聚类算法的行驶工况构建方法[J].吉林大学学报:工学版,2016,46(2):383-389. Qin Da-tong, Zhan Sen, Qi Zheng-gang, et al. Driving cycle construction using K-means clustering method[J]. Journal of Jilin University(Engineering and Technology Edition),2016 ,46(2): 383-389. [14] 赵文昌, 李忠木. 融合改进人工蜂群和K均值聚类的图像分割[J]. 液晶与显示, 2017,32(9):726-735. Zhao Wen-chang, Li Zhong-mu. Image segmentation algorithm based on improved artificial bee colony and K-mean clustering[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(9): 726-735. [15] 丁有伟, 秦小麟, 刘亮, 等. 一种异构集群中能量高效的大数据处理算法[J]. 计算机研究与发展, 2015, 52(2): 377-390. Ding You-wei, Qin Xiao-lin, Liu Liang, et al. An energy efficient algorithm for big data processing in heterogeneous cluster[J]. Journal of Computer Research and Development, 2015, 52(2): 377-390. [16] Forrest W. How to cut datacentre carbon emissions? [EB/OL].[2014-12-08].http∥www.computerweekly.com/Articles/2008/12/05/233748/how-tocut-data-centre carbon-emissions.htm [17] Aïmeur E, Brassard G, Gambs S. Machine learning in a quantum world[J]. Advances in Artificial Intelligence,2006,4013:431-442. [18] Aïmeur E, Brassard G, Gambs S. Quantum clustering algorithms[C]∥Proceedings of the 24th International Conference on Machine Learning, 2007: 1-8. [19] Aïmeur E, Brassard G, Gambs S. Quantum speed-up for unsupervised learning[J]. Machine Learning, 2013, 90(2):261-287. [20] Lloyd S, Mohseni M, Rebentrost P. Quantum algorithms for supervised and unsupervised machine learning[J]. arXiv, 2013:1307.0411. [21] Brassard G, Hoyer P,Mosca M, et al. Quantum amplitude amplification and estimation[J]. Contemporary Mathematics, 2002, 305: 53-74. [22] Durr C, Hoyer P. A quantum algorithm for finding the minimum[J/OL]. [2016-07-11].https://arxiv.org/abs/quant-ph/9607014. [23] 李强,蒋静坪.量子K最近邻算法[J].系统工程与电子技术,2008,30(5):940-943. Li Qiang, Jiang Jing-ping. Quantum K nearest neighbor algorithm[J]. Systems Engineering and Electronics, 2008,30(5):940-943. [24] 陈汉武,高越,张军.量子K-近邻算法[J].东南大学学报:自然科学版, 2015, 45(4):647-651. Chen Han-wu, Gao Yue, Zhang Jun. Quantum K-nearest neighbor algorithm[J]. Journal of Southeast University(Natural Science Edition), 2015,45(4):647-651. |
[1] | 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937. |
[2] | 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577. |
[3] | 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585. |
[4] | 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605. |
[5] | 张曼, 施树明. 典型汽车运行工况的状态转移特征分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1008-1015. |
[6] | 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205. |
[7] | 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213. |
[8] | 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865. |
[9] | 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873. |
[10] | 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881. |
[11] | 邓剑勋, 熊忠阳, 邓欣. 基于谱聚类矩阵的改进DNALA算法[J]. 吉林大学学报(工学版), 2018, 48(3): 903-908. |
[12] | 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532. |
[13] | 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538. |
[14] | 侯现耀, 陈学武. 基于态度的公交出行信息使用市场细分[J]. 吉林大学学报(工学版), 2018, 48(1): 98-104. |
[15] | 赵博, 秦贵和, 赵永哲, 杨文迪. 基于半陷门单向函数的公钥密码[J]. 吉林大学学报(工学版), 2018, 48(1): 259-267. |
|