吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (7): 1561-1573.doi: 10.13229/j.cnki.jdxbgxb20210114

• 交通运输工程·土木工程 • 上一篇    

机翼结构超声除冰系统数值模拟与实验

石忠华(),宋权威,康振航,谢强,章继峰()   

  1. 哈尔滨工程大学 航天与建筑工程学院,哈尔滨 150001
  • 收稿日期:2021-02-05 出版日期:2022-07-01 发布日期:2022-08-08
  • 通讯作者: 章继峰 E-mail:szhongh@hrbeu.edu.cn;jfzhang@hrbeu.edu.cn
  • 作者简介:石忠华(1990-),男,博士研究生.研究方向:超声波除冰技术.E-mail: szhongh@hrbeu.edu.cn
  • 基金资助:
    国家自然科学基金项目(11772098)

Numerical simulation and experiment on ultrasonic deicing system of airfoil structure

Zhong-hua SHI(),Quan-wei SONG,Zhen-hang KANG,Qiang XIE,Ji-feng ZHANG()   

  1. College of Aerospace and Civil Engineering,Harbin Engineering University,Harbin 150001,China
  • Received:2021-02-05 Online:2022-07-01 Published:2022-08-08
  • Contact: Ji-feng ZHANG E-mail:szhongh@hrbeu.edu.cn;jfzhang@hrbeu.edu.cn

摘要:

利用数值和实验方法,对NACA 0015机翼结构超声除冰系统进行了研究。针对覆冰双层板模型,通过全局矩阵法(GMM)研究了覆冰厚度和覆冰弹性模量对冰层界面剪应力集中系数(ISCC)和除冰频率的影响;同时,对压电激励器进行了参数设计,并应用阻抗曲线验证了设计结果的准确性。最后,根据NACA 0015机翼的几何特点,对压电激励器布置和除冰效率进行了研究,并开展了除冰实验,验证了NACA 0015机翼结构超声除冰系统的可行性,实验结果表明:该机翼结构的除冰功耗仅为传统电热除冰的16%左右。

关键词: 固体力学, 机翼结构, 超声除冰, 全局矩阵法, 界面应力集中系数, 除冰效率, 除冰实验

Abstract:

Numerical and experimental methods were used to study the NACA 0015 airfoil structure ultrasonic deicing system. For the ice-coated double-layer plate model, the effects of the thickness and Young's modulus of ice layer on the interface shear stress concentration coefficient (ISCC) and deicing frequency were explored by the global matrix method (GMM). At the same time, specific piezoelectric actuators were designed based on the theoretical research results and the accuracy of the finite element simulation was verified by the impedance curve. Finally, according to the geometric characteristics of the airfoil, the location of piezoelectric actuators and deicing efficiency were studied. Related deicing experiments were conducted to verify the feasibility of the ultrasonic deicing system. The experimental results showed that the deicing power of this airfoil structure is only around 16% of the traditional electro-thermal deicing.

Key words: solid mechanics, airfoil structure, ultrasonic deicing, global matrix method, interface shear stress concentration coefficient, deicing efficiency, deicing experiments

中图分类号: 

  • V244.1

表1

材料属性"

材 料

密度/

(kg·m-3

杨氏模量/

GPa

泊松比
2700700.27
9209.10.28

图1

1 mm机翼在1 mm覆冰厚度下的频散曲线和ISCC值"

图2

覆冰厚度对除冰频率范围和高ISCC值范围的影响"

图3

覆冰弹性模量对除冰频率范围和高ISCC值范围的影响"

图4

NACA 0015翼型缩比机翼模型和机翼前缘"

图5

验证模型有限元图和验证模型实物图"

图6

实验和有限元阻抗曲线对比图"

图7

机翼弦长10%处布置压电片的覆冰计算模型"

表2

压电片在不同安装位置的最大胶层厚度"

压电片直径/mm弦长位置/mm
6090120150
501.1090.6820.4860.369
601.6180.9990.7030.535

图8

机翼全局坐标和局部坐标变换关系图"

图9

冰层界面映射坐标系"

图10

50 mm压电片在机翼不同安装位置时机翼整体位移云图和冰层界面剪应力云图"

图11

60 mm压电片在机翼不同安装位置时机翼整体位移云图和冰层界面剪应力云图"

图12

50 mm压电片在不同安装位置时的DEF值"

图13

60 mm压电片在不同安装位置时的DEF值"

图14

压电片在不同安装位置时的总剪应力"

图15

压电片在机翼内部布局位置图"

图16

除冰实验设备图"

图17

50 mm压电片超声除冰系统除冰过程图和实验与模拟结果对比图"

1 Cao Y, Tan W, Wu Z. Aircraft icing: an ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75: 353-385.
2 Pei B, Xu H, Xue Y. Flight-safety space and cause of incident under icing conditions[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(11): 2983-2990.
3 Pouryoussefi S G, Mirzaei M, Nazemi M-M, et al. Experimental study of ice accretion effects on aerodynamic performance of an NACA 23012 airfoil[J]. Chinese Journal of Aeronautics, 2016, 29(3): 585-595.
4 Goraj Z. An overview of the deicing and anti-icing technologies with prospects for the future[C]∥The 24th International Congress of the Aeronautical Sciences, Yokohama, Japan, 2004.
5 Xie T, Dong J, Chen H, et al. Experimental investigation of deicing characteristics using hot air as heat source[J]. Applied Thermal Engineering, 2016, 107: 681-688.
6 Liu Y, Kolbakir C, Hu H, et al. A comparison study on the thermal effects in DBD plasma actuation and electrical heating for aircraft icing mitigation[J]. International Journal of Heat and Mass Transfer, 2018, 124: 319-330.
7 Muthumani A, Fay L, Akin M, et al. Correlating lab and field tests for evaluation of deicing and anti-icing chemicals: a review of potential approaches[J]. Cold Regions Science and Technology, 2014, 97: 21-32.
8 Wang Z. Recent progress on ultrasonic de-icing technique used for wind power generation, high-voltage transmission line and aircraft[J]. Energy and Buildings, 2017, 140: 42-49.
9 白天, 朱春玲, 苗波,等. 平面铝板上的压电振动除冰方法[J]. 航空学报, 2015, 36(5):1564-1573
Bai Tian, Zhu Chun-ling, Miao Bo, et al. Vibration de-icing method with piezoelectric actuators on flat aluminum plate[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1564-1573.
10 Palacios J, Smith E, Rose J, et al. Ultrasonic de-icing of wind-tunnel impact icing[J]. Journal of Aircraft, 2011, 48(3): 1020-1027.
11 Shi Z, Kang Z, Xie Q, et al. Ultrasonic deicing efficiency prediction and validation for a flat deicing system[J]. Applied Sciences, 2020, 10(19): 6640.
12 Gao H, Rose J L. Ice detection and classification on an aircraft wing with ultrasonic shear horizontal guided waves[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(2): 334-344.
13 Shi Z, Zhao Y, Ma C, et al. Parametric study of ultrasonic de-icing method on a plate with coating[J]. Coatings, 2020, 10(7): 631.
14 Palacios J, Zhu Y, Smith E, et al. Ultrasonic shear and lamb wave interface stress for helicopter rotor de-icing purposes[C]∥The 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and 14th AIAA/ASME/AHS Adaptive Structures Conference, Newport, USA, 2006: 2282.
15 Dassault Systemes Simulia Corp. Abaqus User Manual[M]. Pairs: Dassault Systemes Simulia Corp, 2020.
16 Borigo C J. A novel actuator phasing method for ultrasonic de-icing of aircraft structures[D]. Philadelphia: The Pennsylvania State University, 2014.
17 Cook R D. Concepts and Applications of Finite Element Analysis[M]. London: John Wiley & Sons, 2007.
18 Koivuluoto H, Stenroos C, Ruohomaa R, et al. Research on icing behavior and ice adhesion testing of icephobic surfaces[C]∥Proceedings of the International Workshop on Atmospheric Icing of Structures, Uppsala, Sweden, 2015.
19 Overmeyer A, Palacios J, Smith E. Actuator bonding optimization and system control of a rotor blade ultrasonic deicing system[C]∥The 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and 20th AIAA/ASME/AHS Adaptive Structures Conference, Hawaii, USA, 2012: 1476.
[1] 周晓勤,杨璐,张磊,陈立军. 具有负压缩性的铰接八面体结构的有限元分析[J]. 吉林大学学报(工学版), 2019, 49(3): 865-871.
[2] 庄蔚敏, 解东旋, 余天明, 于皖东. 基于损伤-相变本构模型的高强钢热成形数值模拟分析[J]. 吉林大学学报(工学版), 2015, 45(4): 1206-1212.
[3] 孟广伟,李霄琳,李锋,周立明,王晖. 裂隙介质渗流的光滑多尺度有限元法[J]. 吉林大学学报(工学版), 2015, 45(2): 481-486.
[4] 庄蔚敏, 曹德闯, 叶辉. 基于连续介质损伤力学预测7075铝合金热冲压成形极限图[J]. 吉林大学学报(工学版), 2014, 44(2): 409-414.
[5] 庄蔚敏, 陈延红. 基于连续损伤力学的表面涂层损伤模拟[J]. , 2012, 42(04): 857-862.
[6] 徐涛, 邱冰, 程飞, 金延中, 蒋永洲, 赵世佳. 基于偶数行Epsilon加速的结构拓扑修改重分析算法[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 246-249.
[7] 姜日花1,白爽1,戴跃2 ,赵梅生3. 瘢痕疙瘩的生物力学特性[J]. 吉林大学学报(工学版), 2011, 41(6): 1675-1677.
[8] 蔡斌1,2,孟广伟2,3,董心2,李锋2. 基于模糊失效准则的混凝土结构横向裂纹可靠度[J]. 吉林大学学报(工学版), 2011, 41(4): 1029-1033.
[9] 陈宇东1,裴春艳1,潘淑华2,刘晓军1,张俊兴1. 整车环境下商用车驾驶室模态刚度灵敏度[J]. 吉林大学学报(工学版), 2011, 41(4): 1025-1028.
[10] 彭惠芬1,2,孟广伟1,周立明1,李锋1. 基于小波有限元法的虚拟裂纹闭合法[J]. 吉林大学学报(工学版), 2011, 41(05): 1364-1368.
[11] 孟广伟, 周立明, 李锋. 含裂纹结构的模糊无网格伽辽金法[J]. 吉林大学学报(工学版), 2010, 40(增刊): 287-0292.
[12] 孟广伟, 蔡斌, 李锋, 董心. 曲线拟合与蒙特卡洛法结合的结构可靠度分析方法[J]. 吉林大学学报(工学版), 2010, 40(增刊): 293-0296.
[13] 孟广伟, 周立明, 李锋, 沙丽荣. 摄动随机局部正交无网格伽辽金法[J]. 吉林大学学报(工学版), 2010, 40(06): 1556-1561.
[14] 吴登峰,徐涛,孙睿珩,杨荣,禤伟旗,吉野辰萌. 基于小波基函数的无网格方法[J]. 吉林大学学报(工学版), 2010, 40(03): 740-0744.
[15] 孙睿珩, 徐涛, 左文杰, 杨洪秀, 刘大有. 表面凹坑对活塞缸套摩擦生热过程的影响[J]. 吉林大学学报(工学版), 2009, 39(05): 1234-1239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!