吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1206-1212.doi: 10.13229/j.cnki.jdxbgxb201504027

• • 上一篇    下一篇

基于损伤-相变本构模型的高强钢热成形数值模拟分析

庄蔚敏1, 解东旋1, 余天明1, 于皖东2   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2.中国第一汽车集团公司 技术中心,长春 130011
  • 收稿日期:2014-03-24 出版日期:2015-07-01 发布日期:2015-07-01
  • 通讯作者: 解东旋(1989-),男,博士研究生.研究方向:车身结构设计与优化,有限元分析和金属成形技术.E-mail:jiedx14@mails.jlu.edu.cn
  • 作者简介:庄蔚敏(1970-),女,教授,博士生导师.研究方向:车身结构设计与优化,有限元分析和金属成形技术.E-mail:zhuangwm@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51375201); 吉林省自然科学基金项目(20130101048JC); 国汽(北京)汽车轻量化技术研究院开发基金项目

Numerical simulation of hot forming of high-strength steel based on damage-phase transformation constitutive model

ZHUANG Wei-min1, XIE Dong-xuan1, YU Tian-ming1, YU Wan-dong2   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2.R&
    D Center, China FAW Group Corporation, Changchun 130011, China
  • Received:2014-03-24 Online:2015-07-01 Published:2015-07-01

摘要: 针对目前商用有限元分析软件在模拟高强钢热成形过程中,只能模拟相变过程而无法模拟成形损伤过程这一问题,建立了高强钢热成形损伤-相变本构模型,通过编写该力学模型的用户自定义材料子程序,将其应用于LS-DYNA软件的高强钢热成形数值模拟中,在预测相变演化的同时实现成形损伤演化的预测。对帽形件进行了热成形虚拟试验,试验中马氏体体积分数的最大值出现在帽形件的法兰部位,其均值为98.5%,而成形损伤的最大值则集中在帽形件侧壁的中部,其值达到了0.7,该试验验证了本构模型的有效性,为高强钢热成形的实际生产提供了指导。

关键词: 固体力学, 损伤-相变本构, 高强钢, 热成形, 数值模拟

Abstract: In the simulation of hot forming of high-strength steel, the phase transformation process can be simulated using current commercial finite element analysis software; however, the forming damage process can not be simulated. To overcome such problem, a damage-phase transformation constitutive model for high-strength steel hot forming is established. By writing user defined material subroutine of this mechanical model, which is used in LS-DYNA software, the phase transformation process and forming damage process can be simultaneously predicted. Furthermore, hot forming virtual test of cap-shaped parts is conducted. Results show that the maximum value of the volume fraction of martensite appears in the flange portion of the cap-shaped parts, the average volume faction is 98.5%; while the maximum forming damage concentrates in the middle of the side wall of the parts, and its value reaches 0.7. The effectiveness of constitutive model is verified in this test, and this research may provide guidance for actual production of hot forming of high-strength steel.

Key words: solid-state mechanics, damage-phase transformation constitutive model, high-strength steel, hot forming, numerical simulation

中图分类号: 

  • TG142.1
[1] Naderi M, Ketabchi M, Abbasi M, et al. Analysis of microstructure and mechanical properties of different high strength carbon steels after hot stamping[J]. Journal of Materials Processing Technology,2011,211(6):1117-1125.
[2] 高云凯,高大威,余海燕,等.汽车用高强度钢热成型技术[J]. 汽车技术,2010(8):56-60. Gao Yun-kai, Gao Da-wei, Yu Hai-yan, et al. Analysis on high-strength steel hot forming technology for automobile[J]. Automobile Technology,2010(8):56-60.
[3] 周靖,王宝雨,徐伟力,等. 耦合损伤的22MnB5变形本构模型[J]. 北京科技大学学报,2013,35(11):1450-1457. Zhou Jing, Wang Bao-yu, Xu Wei-li, et al. Damage-coupled constitutive model of 22MnB5 steel in hot deformation[J]. Journal of University of Science and Technology Beijing,2013,35(11):1450-1457.
[4] Bok H H, Lee M G. Comparative study of the prediction of microstructure and mechanical properties for a hot-stamped B-pillar reinforcing part[J]. International Journal of Mechanical Science,2011,53(9):744-752.
[5] Lee M G, Kim S J. Application of hot press forming process to manufacture an automotive part and its finite element analysis considering phase transformation plasticity[J]. International Journal of Mechanical Science,2009,51(11-12):888-898.
[6] Bariani P F, Bruschi S, Ghiotti A. Advances in predicting damage evolution and fracture occurrence in metal forming operations[J]. Journal of Manufacturing Processes,2012,14(4):495-500.
[7] Malcher L, Mamiya E N. An improved damage evolution law based on continuum damage mechanics and its dependence on both stress triaxiality and the third invariant[J]. International Journal of Plasticity,2014,56:232-261.
[8] Kachanov L M. Time of the rupture process under creep conditions[J]. Izv Akad Nauk SSR Otd Tech Nauk,1958,8:26-31.
[9] Lin J, Liu Y, Dean T A. A review on damage mechanisms, models and calibration methods under various deformation conditions[J].International Journal of Damage Mechanics,2005,14(4):299-319.
[10] Watt D F, Coon L, Bibby M, et al. An algorithm for modelling microstructural development in weld heat-affected zones(part a)reaction kinetics[J]. Acta Metallurgica,1988,36(11):3029-3035.
[11] 马宁,胡平,郭威.热成形硼钢热、力及相变耦合关系[J]. 材料热处理学报,2010,31(11): 33-36,41. Ma Ning, Hu Ping, Guo Wei. Experiments and analysis of relations among heat, stress and transformation of boron steel for hot forming[J]. Transactions of Materials and Heat Treatment,2010,31(11):33-36,41.
[12] Lin J, Hayhurst D, Dyson B. A new design of uniaxial testpiece with slit extensometer ridges for improved accuracy of strain measurement[J]. International Journal of Mechanical Sciences,1993,35(1):63-78.
[13] Li N, Mohamed M S, Cai J, et al. Experimental and numerical studies on the formability of materials in hot stamping and cold die quenching process[C]∥The 14th International ESAFORM Conference on Material Forming AIP Conf Proc,2011:1555-1561.
[14] Akerstrom P, Bergman G, Oldenburg M. Numerical implementation of a constitutive model for simulation of hot stamping[J].Modelling and Simulation in Materials Science and Engineering,2007,15:105-119.
[15] Naderi M, Saeed-Akbari A, Bleck W. The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel[J]. Materials Science and Engineering A,2008,487(1-2):445-455.
[16] Arthur Shapiro. Finite element modelling of hot Stamping[J]. Metal Forming,2011,80(9):658-664.
[1] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[2] 宫亚峰, 王博, 魏海斌, 何自珩, 何钰龙, 申杨凡. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报(工学版), 2018, 48(5): 1411-1417.
[3] 庄蔚敏, 赵文增, 解东旋, 李兵. 超高强钢/铝合金热铆连接接头性能[J]. 吉林大学学报(工学版), 2018, 48(4): 1016-1022.
[4] 邱小明, 王银雪, 姚汉伟, 房雪晴, 邢飞. 基于灰色关联的DP1180/DP590异质点焊接头工艺参数优化[J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[5] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[6] 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[7] 付文智, 刘晓东, 王洪波, 闫德俊, 刘晓莉, 李明哲, 董玉其, 曾振华, 刘桂彬. 关于1561铝合金曲面件的多点成形工艺[J]. 吉林大学学报(工学版), 2017, 47(6): 1822-1828.
[8] 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[9] 王宏朝, 单希壮, 杨志刚. 地面效应模拟对环境风洞中车辆冷却系统试验影响的数值模拟[J]. 吉林大学学报(工学版), 2017, 47(5): 1373-1378.
[10] 彭玮, 李国祥, 闫伟. 适用于发动机散热器的壁面函数改进[J]. 吉林大学学报(工学版), 2017, 47(3): 804-810.
[11] 寇淑清, 宋玮峰, 石舟. 36MnVS4连杆裂解加工模拟及缺陷分析[J]. 吉林大学学报(工学版), 2017, 47(3): 861-868.
[12] 谷诤巍, 吕萌萌, 张文学, 雷娇娇, 徐虹. 中国标准动车组前端三维蒙皮件冲压成形[J]. 吉林大学学报(工学版), 2017, 47(3): 869-875.
[13] 张鹏, 寇淑清, 赵勇, 林宝君. 装配式凸轮轴三点式轴向滚花过程[J]. 吉林大学学报(工学版), 2016, 46(6): 1953-1960.
[14] 袁哲, 徐东, 刘春宝, 李雪松, 李世超. 基于热流固耦合过程的液力缓速器叶片强度分析[J]. 吉林大学学报(工学版), 2016, 46(5): 1506-1512.
[15] 程艳艳, 李明哲, 邢健. 不同单元形式对多点模具柔性拉伸成形质量的影响[J]. 吉林大学学报(工学版), 2016, 46(5): 1552-1557.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!