吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (9): 1971-1981.doi: 10.13229/j.cnki.jdxbgxb20220355

• • 上一篇    

质子交换膜燃料电池运行工况参数敏感性分析

杨子荣1,2(),李岩1,3,冀雪峰1,2,刘芳3,郝冬1,2()   

  1. 1.中汽研新能源汽车检验中心(天津)有限公司,天津 300399
    2.中国汽车技术研究中心有限公司,天津 300399
    3.河北工业大学 机械工程学院,天津 300401
  • 收稿日期:2022-03-31 出版日期:2022-09-01 发布日期:2022-09-13
  • 通讯作者: 郝冬 E-mail:yangzirong@catarc.ac.cn;haodong@catarc.ac.cn
  • 作者简介:杨子荣(1993-),男,工程师,博士. 研究方向:燃料电池仿真测试技术. E-mail:yangzirong@catarc.ac.cn
  • 基金资助:
    国家重点研发计划项目(2021YFB2501500)

Sensitivity analysis of operating parameters for proton exchange membrane fuel cells

Zi-rong YANG1,2(),Yan LI1,3,Xue-feng JI1,2,Fang LIU3,Dong HAO1,2()   

  1. 1.CATARC New Energy Vehicle Test Center (Tianjin) Co. ,Ltd. ,Tianjin 300399,China
    2.China Automotive Technology and Research Center Co. ,Ltd. ,Tianjin 300399
    3.School of Mechanical Engineering,Hebei University of Technology,Tianjin 300401,China
  • Received:2022-03-31 Online:2022-09-01 Published:2022-09-13
  • Contact: Dong HAO E-mail:yangzirong@catarc.ac.cn;haodong@catarc.ac.cn

摘要:

建立了一维瞬态多相流燃料电池机理模型和全局敏感性分析模型,研究了运行温度、气体压强、化学计量比以及相对湿度对输出性能的影响规律和影响程度。结果表明:高功率负荷条件下,运行温度的变化会造成更明显的性能波动;提高进气压强和化学计量比能够增强输出性能;相对湿度过低产生的“膜干”现象在低电流密度区域更加明显;经过敏感性量化分析,本文将9类工况参数划分为高敏感、较敏感和不敏感参数;随着电流密度的增大,阴极进气化学计量比、阴阳极进气湿度的敏感性较大且整体呈上升趋势。

关键词: 动力工程及工程热物理, 质子交换膜燃料电池, 运行工况参数, 瞬态机理模型, 全局敏感性分析

Abstract:

A one-dimensional transient multiphase fuel cell model and a global sensitivity analysis model were established to investigate the effects of operating temperature, relative humidity, stoichiometry, and pressure on output performances. The result shows that the variation of operating temperature leads to more significant performance fluctuations at high load conditions. Increasing gas pressure and stoichiometry is beneficial to performance enhancement. The membrane dehydration phenomena caused by low relative humidity becomes more severe in small current density regions. Based on the quantitative sensitivity analysis, the nine operating parameters are classified as very sensitive, rather sensitive, and not sensitive parameter. With current density rising, cathode stoichiometry, anode inlet relative humidity, and cathode inlet relative humidity are more sensitive, which also show a typically upward trend.

Key words: power engineering and engineering thermophysics, proton exchange membrane fuel cell, operating parameter, transient mechanism model, global sensitivity analysis

中图分类号: 

  • TM911.42

表1

燃料电池结构设计参数和运行工况参数"

参数数值单位
有效反应面积25cm2
质子交换膜、催化层、微孔层、气体扩散层、流道、极板的厚度0.025,0.01,0.03,0.2,1,2mm
质子交换膜、催化层、微孔层、气体扩散层、极板的密度1980,1000,1000,1000,1000kg·m-3
质子交换膜、催化层、微孔层、气体扩散层、极板的比热容833,3300,568,2000,1580J/(kg·K)
质子交换膜、催化层、微孔层、气体扩散层、极板的热导率0.95,1.0,1.0,1.0,20W/(m·K)
催化层、微孔层、气体扩散层、极板的电导率3000,3000,3000,5000S/m
催化层中聚合物的体积分数0.45-
催化层、微孔层、气体扩散层的接触角100,120,120°
催化层、微孔层、气体扩散层的孔隙率0.3,0.4,0.7-
环境对流传热系数20W/(m2·K)
进气化学计量比1.5-
进气压强151 988Pa
运行温度80
进气相对湿度0.8-
进气温度80

表2

模型控制方程"

方程计算表达式求解域
膜态水守恒方程ρPEMEW?ωλ?t=ρPEMEW??Dmweff??λ+Smw质子交换膜、催化层
液态水守恒方程?ερlqslq?t=??ρlqKlqμlq??pl+Slq催化层、扩散层、微孔层
气体守恒方程??tε1-slqρgYi=??ρgDieff?Yi+Si,??in??CL,MPL,GDL??tρgYi+??ρgugYi=Si,???inCH催化层、扩散层、微孔层、流道
能量守恒方程??tρcpfl,sleffT=??kfl,sleff??T+ST整个燃料电池区域
输出电压

Vout=Vnernst-Vact-Vohmic-Vconc

Vnernst=ΔG2F+ΔS2FT-Tref+RT2FlnPH2Pref,a+12lnPO2Pref,c

-

图1

当k=3时输入空间中的轨迹示意图"

图2

模型仿真结果与试验数据对比"

表3

仿真工况"

工况温度/℃压强/Pa化学计量比相对湿度
180151 9881.50.8
290151 9881.50.8
370151 9881.50.8
460151 9881.50.8
580121 5901.50.8
680202 6501.50.8
780253 3121.50.8
880151 9881.30.8
980151 9882.00.8
1080151 9882.50.8
1180151 9881.50.2
1280151 9881.50.3
1380151 9881.50.4
1480151 9881.50.6
1580151 9881.51.0

图3

运行温度为60、70、80、90 ℃时燃料电池的输出性能"

图4

不同进气压强时燃料电池的输出性能"

图5

化学计量比等于1.3、1.5、2.0、2.5时燃料电池的输出性能"

图6

不同相对湿度时燃料电池的输出性能"

表4

燃料电池运行工况参数取值"

参数符号取值
燃料电池运行温度/℃Tcell60~80
阳极进气温度/℃Tin,a60~80
阴极进气温度/℃Tin,c60~80
阳极进气湿度RHa0.1~1.0
阴极进气湿度RHc0.1~1.0
阳极进气化学计量比STa1.0~3.0
阴极进气化学计量比STc1.0~3.0
阳极进气压强/PaPa101 325~303 975
阴极进气压强/PaPc101 325~303 975

图7

电流密度为1.0 A·cm-2时运行工况参数的敏感性量化指标"

表5

运行工况参数敏感性分类"

分类运行工况参数
高敏感参数STcRHaRHc
较敏感参数PcPaSTa
不敏感参数TcellTin,aTin,c

图8

高敏感性参数变化和不敏感性参数变化时输出电压散点图"

图9

不同电流密度下的运行工况参数敏感性量化指标"

1 高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J].化工进展, 2022, 41(3): 1539-1555.
Gao Wei-tao, Lei Yi-jie, Zhang Xun, et al. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555.
2 侯中军, 江洪春, 王仁芳, 等. 轿车用燃料电池发动机示范应用稳定性[J]. 吉林大学学报: 工学版, 2011, 41(): 131-136.
Hou Zhong-jun, Jiang Hong-chun, Wang Ren-fang, et al. Performance stability of fuel cell engine applied in the fuel cell car demonstration[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(Sup.2): 131-136.
3 孙闫,夏长高,尹必峰,等. 燃料电池电动汽车的能量管理[J].吉林大学学报: 工学版. DOI:10.13229/j.cnki.jdxbgxb20210773 .
doi: 10.13229/j.cnki.jdxbgxb20210773
Sun Yan, Xia Chang-gao, Yin Bi-feng, et al. Energy management strategyof fuel cell electric vehicles[J]. Journal of Jilin University(Engineering and Technology Edition).DOI:10.13229/j.cnki.jdxbgxb20210773 .
doi: 10.13229/j.cnki.jdxbgxb20210773
4 Chen H C, Liu B, Zhang T, et al. Influencing sensitivities of critical operating parameters on PEMFC output performance and gas distribution quality under different electrical load conditions[J]. Applied Energy, 2019, 255: No. 113849.
5 Miansari M, Sedighi K, Amidpour M, et al. Experimental and thermodynamic approach on proton exchange membrane fuel cell performance[J]. Journal of Power Sources, 2009, 190(2): 356-361.
6 Barakat E G, Abdel-Rahman A K, Ahmed M A, et al. An experimental study of operational parameters on the performance of PEMFCs[C]∥Asme International Mechanical Engineering Congress & Exposition. British Columbia, Canada, 2010, 927-933.
7 Zhang Q, Lin R, Cui X, et al. Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution[J]. Energy, 2016, 115(1): 550-560.
8 Liu Y F, Fan L, Pei P C, et al. Asymptotic analysis for the inlet relative humidity effects on the performance of proton exchange membrane fuel cell[J]. Applied Energy, 2018, 231: 573-584.
9 Baschuk J, Li X G. Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding[J]. Journal of Power Sources, 2000, 86(1/2): 181-196.
10 Mann R F, Amphlett J C, Hooper M, et al. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell[J]. Journal of Power Sources, 2000, 86(1/2): 173-180.
11 Bernardi D M. Water-balance calculations for solid-polymerelectrolyte fuel cells[J]. Journal of the Electrochemical Society, 1990, 137(11): 3344-3350.
12 Yang Z R, Du Q, Jia Z W, et al. A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems[J]. Applied Energy, 2019, 256: No. 113959.
13 Bao C, Bessler W G. Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part I. Model development[J]. Journal of Power Sources, 2015, 275: 922-934.
14 Jiao K, Li X G. Effect of surface dynamic wettability in proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35(17): 9095-9103.
15 Liao X, Liu K, Le J, et al. Extended affine arithmetic-based global sensitivity analysis for power flow with uncertainties[J]. International Journal of Electrical Power & Energy Systems, 2020, 115: No. 105440.
16 Min C H, He Y L, Liu X L, et al. Parameter sensitivity examination and discussion of PEM fuel cell simulation model validation: part II: results of sensitivity analysis and validation of the model[J]. Journal of Power Sources, 2006, 160(1): 374-385.
17 Laoun B, Naceur M W, Khellaf A, et al. Global sensitivity analysis of proton exchange membrane fuel cell model[J]. International Journal of Hydrogen Energy, 2016, 41(22): 9521-9528.
18 Jiang Y, Yang Z R, Jiao K,et al. Sensitivity analysis of uncertain parameters based on an improved proton exchange membrane fuel cell analytical model[J]. Energy Conversion & Management, 2018, 164: 639-654.
19 焦魁 等. 质子交换膜燃料电池水热管理[M]. 北京:科学出版社, 2020.
20 Yang Z R, Du Q, Huo S, et al. Effect of membrane electrode assembly design on the cold start process of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(40): 25372-25387.
21 Huo S, Jiao K, Park J W. On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell[J]. Applied Energy, 2019, 233-234: 776-788.
22 Wu K C, Xie X, Wang B W, et al. Two-dimensional simulation of cold start processes for proton exchange membrane fuel cell with different hydrogen flow arrangements[J]. International Journal of Hydrogen Energy, 2020, 45(35): 17795-17812.
23 Yao L, Peng J, Zhang J B, et al. Numerical investigation of cold-start behavior of polymer electrolyte fuel cells in the presence of super-cooled water[J]. International Journal of Hydrogen Energy, 2018, 43(32): 15505-15520.
24 Gwak G H, Ko J H, Ju H. Numerical investigation of cold-start behavior of polymer-electrolyte fuel-cells from subzero to normal operating temperatures- effects of cell boundary and operating conditions[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21927-21937.
25 Yang Z R, Du Q, Huo S, et al. Effect of membrane electrode assembly design on the cold start process of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(40): 25372-25387.
26 Wang B, Wu K, Yang Z, et al. A quasi-2D transient model of proton exchange membrane fuel cell with anode recirculation[J]. Energy Conversion & Management, 2018, 171: 1463-1475.
27 Abdollahzadeh M, Ribeirinha P, Boaventura M, et al. Three-dimensional modeling of PEMFC with contaminated anode fuel[J]. Energy, 2018, 152: 939-959.
28 Morris M D. Factorial sampling plans for preliminary computational experiments[J]. Technometrics, 1991, 33(2): 161-174.
29 Xia Z F, Chen H C, Zhang T, et al. Effect of channel-rib width ratio and relative humidity on performance of a single serpentine PEMFC based on electrochemical impedance spectroscopy[J]. International Journal of Hydrogen Energy, 2022, 47(26):13076-13086.
30 Najmi A, Anyanwu I S, Xie X, et al. Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields[J]. Energy, 2021, 217: No. 119313.
31 Yang T, Sheu B, Ghalambaz M, et al. Effects of operating parameters and load mode on dynamic cell performance of proton exchange membrane fuel cell[J]. International Journal of Energy Research, 2021, 45(2): 2474-2487.
32 Jiao K, Li X G. Water transport in polymer electrolyte membrane fuel cells[J]. Progress in Energy & Combustion Science, 2011, 37(3): 221-291.
33 Yin L Z, Qi L, Chen W R, et al. Experimental analysis of optimal performance for a 5 kW PEMFC system[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5499-5506.
[1] 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970.
[2] 徐振军,王浩,赵开元,郝博轶,李清清,王常浩. 复合太阳能的燃气机热泵热力学性能[J]. 吉林大学学报(工学版), 2022, 52(8): 1759-1763.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!