吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (9): 1957-1970.doi: 10.13229/j.cnki.jdxbgxb20220261

• •    

基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述

池训逞1(),侯中军2,魏伟3,4,夏增刚2,庄琳琳2,郭荣1()   

  1. 1.同济大学 汽车学院,上海 201804
    2.上海捷氢科技股份有限公司 系统开发部,上海 201800
    3.中科军联(张家港)新能源科技有限公司 技术中心,江苏 张家港 215600
    4.上海醇加能源科技有限公司 技术中心,上海 201600
  • 收稿日期:2022-03-19 出版日期:2022-09-01 发布日期:2022-09-13
  • 通讯作者: 郭荣 E-mail:chixuncheng@tongji.edu.cn;guorong@tongji.edu.cn
  • 作者简介:池训逞(1995-),男,博士研究生. 研究方向:燃料电池系统建模与状态估计.E-mail:chixuncheng@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目(U21A20166)

Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system

Xun-cheng CHI1(),Zhong-jun HOU2,Wei WEI3,4,Zeng-gang XIA2,Lin-lin ZHUANG2,Rong GUO1()   

  1. 1.School of Automotive Studies,Tongji University,Shanghai 201804,China
    2.Department of System Development,Shanghai Hydrogen Propulsion Technology Co. ,Ltd. ,Shanghai 201800,China
    3.CAS&M (Zhangjiagang) New Energy Technology Co. ,Ltd. ,Zhangjiagang 215600,China
    4.Shanghai Alcplus Energy Technology Co. ,Ltd. ,Shanghai 201600,China
  • Received:2022-03-19 Online:2022-09-01 Published:2022-09-13
  • Contact: Rong GUO E-mail:chixuncheng@tongji.edu.cn;guorong@tongji.edu.cn

摘要:

为了对质子交换膜燃料电池(PEMFC)系统进行管理以延长其寿命,需要设计基于模型的状态观测器对内部状态进行实时监测,并通过反馈控制将其控制在预期水平。由于PEMFC阳极氢气浓度直接决定了系统的输出性能,并且不断循环的氢气以及氮气因跨膜扩散在阳极不断累积,导致阳极气体浓度估计困难。因此,本文着重介绍了PEMFC阳极气体浓度估计的前沿技术,并对现有研究存在的问题和未来发展趋势进行了阐述,以期为PEMFC气、水、热管理的研究做出贡献。

关键词: 车辆工程, 质子交换膜燃料电池, 内部状态, 基于模型的观测器

Abstract:

In order to prolong proton exchange membrane fuel cell (PEMFC) lifespan, it is necessary to design a state observer to monitor the internal states, and control the internal states at the expected level through feedback control. Since the anode hydrogen concentration directly determines the output performance of PEMFC, and circulation of anode hydrogen as well as nitrogen accumulation caused by diffusion across membrane leads to the difficulty of anode gas concentration estimation. Therefore, this paper focuses on the cutting-edge technology of PEMFC anode gas concentration estimation, and the existing problems as well as the future development trend of existing research are also described, hoping to make contributions to the research of gas, water and heat management for PEMFC.

Key words: vehicle engineering, proton exchange membrane fuel cell(PEMFC), internal states, model-based observer

中图分类号: 

  • TM911

图1

燃料电池单体工作原理"

图2

燃料电池系统典型结构"

表1

氢瓶分类"

类型材料最大储氢压力/MPa
Ⅰ型全金属材料20
Ⅱ型金属材料衬里,纤维-树脂复合材料包裹(包裹材料用箍圈式)。30
Ⅲ型金属材料衬里,纤维-树脂复合材料包裹(采用两极+螺旋铺设)。70
Ⅳ型高分子材料衬里,纤维-树脂复合材料包裹(采用两极+螺旋铺设)。70

图3

减压阀原理图"

图4

引射器结构图"

图5

基于观测器的燃料电池控制系统"

表2

燃料电池阳极被估计气体"

名称描述
阳极氮气分压力pN2阳极氮气由阴极气体跨膜渗透而来,过多的氮气会降低氢气浓度,从而降低系统输出性能。
阳极氢气分压力pH2氢气的分压力决定了系统输出性能。
阳极水蒸气分压力pvap水蒸气的分压力决定了燃料电池内部的相对湿度,进而影响了质子交换膜的含水量。

图6

龙伯格观测器原理图"

图7

卡尔曼滤波算法流程图"

图8

卡尔曼滤波观测器原理图"

图9

滑模观测器原理图"

图10

燃料电池气体流道广义离散模型"

表3

燃料电池阳极气体浓度观测器总结"

模型类型文献观测器类型估计参数评价
集总参数模型30龙伯格观测器阳极气体分压力未考虑阴极水的扩散;观测器的收敛特性易受噪声和误差的影响。
31阳极氮气分压力未考虑阳极水蒸气的存在;跨膜系数仅由电流密度确定;观测器的收敛特性易受噪声和误差的影响。

33

34

阳极氢气分压力线性变参数燃料电池模型;观测器的收敛特性易受噪声和误差的影响。
36EKF观测器阴、阳极气体分压力观测器的收敛特性易受噪声的影响。
38UKF观测器阳极格气体分压力、平均液态水饱和比观测器的收敛特性易受噪声的影响。
39阳极氮气分压力未考虑阳极水蒸气存在;观测器的收敛特性易受噪声的影响。
40自适应UKF观测器流道液态水含量、气体扩散层水的体积和压力对噪声进行自适应估计;观测器的收敛特性易受噪声的影响。
41自适应观测器阳极出入口氢气分压力未考虑阳极氮气与水蒸气存在;缺乏对燃料电池电压测量噪声和系统参数等不可测量值的鲁棒性。
42阳极出入口氢气分压力、阳极流道流量
44一阶滑模观测器阴、阳极气体分压力观测器输出存在抖振现象。
45阳极氮气渗透量、相对湿度
46二阶滑模观测器阳极流道氢气分压力未考虑阳极氮气存在;输出抖振现象缓解;需要再设计一个氧气分压力观测器。
47包括阴、阳极流道内温度和气体分压力的12种状态鲁棒性好;输出抖振现象缓解。
分布参数模型51高阶滑模观测器阳极流道气体分压力离散模型;在扰动条件下鲁棒性好;计算量由数学复杂度决定。
52
53
54
1 周雅夫, 邵芳雪, 黄立建, 等. 燃料电池车用新型低纹波DC/DC变换器设计[J]. 吉林大学学报: 工学版, 2020, 50(4): 1201-1208.
Zhou Ya-fu, Shao Fang-xue, Huang Li-jian, et al. Design of a new low ripple DC/DC converter for fuel cell vehicles[J]. Journal of Jilin University(Engineering and Technology Edition), 50(4): 1201-1208.
2 张少哲, 戴海峰, 袁浩, 等. 质子交换膜燃料电池电化学阻抗谱敏感性研究[J]. 机械工程学报, 2021, 57(14): 40-51.
Zhang Shao-zhe, Dai Hai-feng, Yuan Hao, et al. Sensibility study on electrochemical impedance of proton exchange membrane fuel cell[J]. Journal of Mechanical Engineering, 2021, 57(14): 40-51.
3 吴中乐. 基于观测器的燃料电池氢气供给控制[D]. 杭州: 浙江大学控制科学与工程学院, 2018.
Wu Zhong-le. Observer based fuel delivery control for PEMFC fuel cells[D]. Hangzhou: College of Control Science and Engineering, Zhejiang University, 2018.
4 Jiao J R, Chen F X. Humidity estimation of vehicle proton exchange membrane fuel cell undervariable operating temperature based on adaptive sliding mode observation[J]. Applied Energy, 2022, 313:No.118779.
5 周伟, 朱鑫宁, 连云崧, 等. 质子交换膜燃料电池的三维流场技术研究进展[J]. 机械工程学报, 2021, 57(8): 2-12.
Zhou Wei, Zhu Xin-ning, Lian Yun-song, et al. Research progress on three-dimensional flow field technology of proton exchange membrane fuel cell[J]. Journal of Mechanical Engineering, 2021, 57(8): 2-12.
6 周苏, 胡哲, 谢非. 车用质子交换膜燃料电池空气供应系统自适应解耦控制方法研究[J]. 汽车工程, 2020, 42(2): 172-177.
Zhou Su, Hu Zhe, Xie Fei. Study on adaptive decoupling control algorithm for air supply system of vehicle proton exchange membrane fuel cell[J]. Automotive Engineering, 2020, 42(2): 172-177.
7 严彦, 周利彪, 白文涛, 等. 燃料电池用空气压缩机的研究现状[J]. 机电工程, 2021, 38(12): 1513-1519.
Yan Yan, Zhou Li-biao, Bai Wen-tao, et al. Research status of air compressors in fuel cells[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(12): 1513-1519.
8 霍海波, 杨海东, 周帅福, 等. PEMFC系统故障诊断的研究[J]. 电池, 2020, 50(3): 289-292.
Huo Hai-bo, Yang Hai-dong, Zhou Shuai-fu, et al. Research status quo of fault diagnosis for a PEMFC system[J]. Battery Bimonthly, 2020, 50(3): 289-292.
9 方川. 基于降维模型的燃料电池发动机控制方法研究[D]. 北京: 清华大学车辆与运载学院, 2017.
Fang Chuan. Fuel cell engine control based on reduced dimension model[D]. Beijing: School of Vehicle and Mobility, Tsinghua University, 2017.
10 韩济泉, 孔祥程, 冯健美, 等. 大功率燃料电池汽车氢循环系统性能分析[J]. 汽车工程, 2022, 44(1): 1-7, 35.
Han Ji-quan, Kong Xiang-cheng, Feng Jian-mei, et al. Performance analysis of hydrogen recirculation system of high power fuel cell vehicles[J]. Automotive Engineering, 2022, 44(1): 1-7, 35.
11 刘子伟. 燃料电池供氢系统建模与控制策略研究[D]. 北京: 北京交通大学机械与电子控制工程学院, 2021.
Liu Zi-wei. Research on modeling and control strategy of fuel cell hydrogen supply system[D]. Beijing: School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, 2021.
12 Huang Z, Jian Q, Zhao J. Experimental study on improving the dynamic characteristics of open-cathode PEMFC stack with dead-end anode by condensation and circulation of hydrogen[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19858-19868.
13 Hu Z, Yu Y, Wang G J, et al. Anode purge strategy optimization of the polymer electrode membrane fuel cell system under the dead-end anode operation[J]. Journal of Power Sources, 2016, 320: 68-77.
14 Wang B, Deng H, Jiao K. Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation[J]. Applied Energy, 2018, 225: 1-13.
15 Shen K Y, Park S, Kim Y-B. Hydrogen utilization enhancement of proton exchange membrane fuel cell with anode recirculation system through a purge strategy[J]. International Journal of Hydrogen Energy, 2020, 45(33): 16773-16786.
16 Cheng Z Y, Luo L Z, Huang B, et al. Effect of humidification on distribution and uniformity of reactants and water content in PEMFC[J]. International Journal of Hydrogen Energy, 2021, 46(52): 26560-26574.
17 Fan L H, Zhang G B, Jiao K. Characteristics of PEMFC operating at high current density with low external humidification[J]. Energy Conversion and Management, 2017, 150: 763-774.
18 Hu D H, Wang Y T, Li J W, et al. Investigation of optimal operating temperature for the PEMFC and its tracking control for energy saving in vehicle applications[J]. Energy Conversion and Management, 2021, 249: No. 114842.
19 Liu Y, Tu Z, Chan S H. Performance enhancement in a H2/O2 PEMFC with dual-ejector recirculation[J]. International Journal of Hydrogen Energy, 2022, 47(25): 12698-12710.
20 Xue H, Wang L, Zhang H, et al. Design and investigation of multi-nozzle ejector for PEMFC hydrogen recirculation[J]. International Journal of Hydrogen Energy, 2020, 45(28): 14500-14516.
21 Zhao D D, Xia L, Dang H B, et al. Design and control of air supply system for PEMFC UAV based on dynamic decoupling strategy[J]. Energy Conversion and Management, 2022, 253: No. 115159.
22 Baik K D, Kim M S. Characterization of nitrogen gas crossover through the membrane in proton-exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(1): 732-739.
23 Xu L F, Hu J, Cheng S L, et al. Nonlinear observation of internal states of fuel cell cathode utilizing a high-order sliding-mode algorithm[J]. Journal of Power Sources, 2017, 356: 56-71.
24 Jiao K, Alaefour I E, Li X G, et al. Simultaneous measurement of current and temperature distributions in a proton exchange membrane fuel cell[J]. Electrochimica Acta, 2011, 56(8): 2967-2982.
25 Hu J M, Xu L F, Li J Q, et al. Model-based estimation of liquid saturation in cathode gas diffusion layer and current density difference under proton exchange membrane fuel cell flooding[J]. International Journal of Hydrogen Energy, 2015, 40(41): 14187-14201.
26 Verma A, Pitchumani R. Influence of membrane properties on the transient behavior of polymer electrolyte fuel cells[J]. Journal of Power Sources, 2014, 268: 733-743.
27 Siege C. Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells[J]. Energy, 2008, 33(9): 1331-1352.
28 Ziogou C, Voutetakis S, Papadopoulou S, et al. Modeling, simulation and experimental validation of a PEM fuel cell system[J]. Computers & Chemical Engineering, 2011, 35(9): 1886-1900.
29 洪凌. 车用燃料电池发电系统氢气回路控制[D]. 杭州: 浙江大学控制科学与工程学院, 2017.
Hong Ling. Fuel delivery control for vehicular fuel cell power systems[D]. Hangzhou: College of Control Science and Engineering, Zhejiang University, 2017.
30 Hong L, Chen J, Liu Z Y, et al. A nonlinear control strategy for fuel delivery in PEM fuel cells considering nitrogen permeation[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1565-1576.
31 Liu Z, Chen J, Liu H, et al. Anode purge management for hydrogen utilization and stack durability improvement of PEM fuel cell systems[J]. Applied Energy, 2020, 275: No. 115110.
32 Lira S, Puig V, Quevedo J, et al. LPV observer design for PEM fuel cell system: application to fault detection[J]. Journal of Power Sources, 2011, 196(9): 4298-4305.
33 Lira S, Puig V, Quevedo J, et al. LPV model-based fault diagnosis using relative fault sensitivity signature approach in a PEM fuel cell[C]∥18th Mediterranean Conference on Control and Automation, Marrakech, Morocco, 2010: 1284-1289.
34 Lira S, Puig V, Quevedo J. Robust LPV model-based sensor fault diagnosis and estimation for a PEM fuel cell system[C]∥2010 Conference on Control and Fault-Tolerant Systems, Nice, France, 2010: 819-824.
35 Hua Z G, Zheng Z X, Pahon E, et al. A review on lifetime prediction of proton exchange membrane fuel cells system[J]. Journal of Power Sources, 2022, 529: No. 231256.
36 Böhler L, Ritzberger D, Hametner C, et al. Constrained extended Kalman filter design and application for on-line state estimation of high-order polymer electrolyte membrane fuel cell systems[J]. International Journal of Hydrogen Energy, 2021, 46(35): 18604-18614.
37 Chen K, Laghrouche S, Djerdir A. Performance analysis of PEM fuel cell in mobile application under real traffic and environmental conditions[J]. Energy Conversion and Management, 2021, 227: No. 113602.
38 Xu L F, Hu Z Y, Fang C, et al. Anode state observation of polymer electrolyte membrane fuel cell based on unscented Kalman filter and relative humidity sensor before flooding[J]. Renewable Energy, 2021, 168: 1294-1307.
39 Piffard M, Gerard M, Bideaux E, et al. Control by state observer of PEMFC anodic purges in dead-end operating mode[J]. IFAC-PapersOnLine, 2015, 48(15): 237-243.
40 Vepa R. Adaptive state estimation of a PEM fuel cell[J]. IEEE Transactions on Energy Conversion, 2012, 27(2): 457-467.
41 Arcak M, Görgün H, Pedersen L M, et al. A nonlinear observer design for fuel cell hydrogen estimation[J]. IEEE Transactions on Control Systems Technology, 2004, 12(1): 101-110.
42 Morales J, Astorga C, Reyes J, et al. Application of a nonlinear observer for estimation of variables in a PEM fuel cell system[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39: 1323-1332.
43 Matraji I, Ahmed F S, Laghrouche S, et al. Comparison of robust and adaptive second order sliding mode control in PEMFC air-feed systems[J]. International Journal of Hydrogen Energy, 2015, 40(30): 9491-9504.
44 Kim E-S, Kim C-J, Eom K-S. Nonlinear observer design for PEM fuel cell systems[C]∥2007 International Conference on Electrical Machines and Systems (ICEMS), Seoul, Korea, 2007: 1835-1839.
45 Piffard M, Gerard M, Fonseca R D. Sliding mode observer for proton exchange membrane fuel cell: automotive application[J]. Journal of Power Sources, Journal of Power Sources, 2018, 388: 71-77.
46 Liu J X, Lin W Y, Alsaadi F, et al. Nonlinear observer design for PEM fuel cell power systems via second order sliding mode technique[J]. Neurocomputing, 2015, 168: 145-151.
47 Sankar K, Jana A K. Nonlinear multivariable sliding mode control of a reversible PEM fuel cell integrated system[J]. Energy Conversion and Management, 2018, 171: 541-565.
48 Chen H C, Zhao X, Qu B W, et al. An evaluation method of gas distribution quality in dynamic process of proton exchange membrane fuel cell[J]. Applied Energy, 232, 2018: 26-35.
49 Mangold M, Bück A, Hanke-Rauschenbach R. Passivity based control of a distributed PEM fuel cell model[J]. Journal of Process Control, 2010, 20(3): 292-313.
50 Luna J, Husar A, Serra M. Nonlinear distributed parameter observer design for fuel cell systems[J]. International Journal of Hydrogen Energy, 2015, 40(34): 11322-11332.
51 Luna J, Usai E, Husar A, et al. Nonlinear observation in fuel cell systems: a comparison between disturbance estimation and high-order sliding-mode techniques[J]. International Journal of Hydrogen Energy, 2016, 41(43): 19737-19748.
52 Luna J, Ocampo-Martinez C, Serra M. Nonlinear predictive control for the concentrations profile regulation under unknown reaction disturbances in a fuel cell anode gas channel[J]. Journal of Power Sources, 2015, 282: 129-139.
53 Luna J, Jemei S, Yousfi-Steiner N, et al. Nonlinear predictive control for durability enhancement and efficiency improvement in a fuel cell power system[J]. Journal of Power Sources, 2016, 328: 250-261.
54 Chen J, Wu Z L, Wu C S, et al. Observer based fuel delivery control for PEM fuel cells with a segmented anode model[J]. Asian Journal of Control, 2019, 21(4): 1781-1795.
[1] 刘汉武,雷雨龙,阴晓峰,付尧,李兴忠. 增程式电动汽车增程器多点控制策略优化[J]. 吉林大学学报(工学版), 2022, 52(8): 1741-1750.
[2] 王骏骋,吕林峰,李剑敏,任洁雨. 分布驱动电动汽车电液复合制动最优滑模ABS控制[J]. 吉林大学学报(工学版), 2022, 52(8): 1751-1758.
[3] 王奎洋,何仁. 基于支持向量机的制动意图识别方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1770-1776.
[4] 高青,王浩东,刘玉彬,金石,陈宇. 动力电池应急冷却喷射模式实验分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1733-1740.
[5] 郝帅,程川泰,王军年,张君媛,俞有. 运动型SUV驾驶室布置人机优化设计与测试评价[J]. 吉林大学学报(工学版), 2022, 52(7): 1477-1488.
[6] 张家旭,郭崇,王晨,赵健,王欣志. 基于半实物仿真平台的自动泊车系统性能评价[J]. 吉林大学学报(工学版), 2022, 52(7): 1552-1560.
[7] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于某二级减速齿轮系统的齿面修形优化[J]. 吉林大学学报(工学版), 2022, 52(7): 1541-1551.
[8] 聂光明,谢波,田彦涛. 基于Frenet框架的协同自适应巡航控制算法设计[J]. 吉林大学学报(工学版), 2022, 52(7): 1687-1695.
[9] 华琛,牛润新,余彪. 地面车辆机动性评估方法与应用[J]. 吉林大学学报(工学版), 2022, 52(6): 1229-1244.
[10] 李雄,兰凤崇,陈吉清,童芳. Hybird III假人模型与CHUBM人体生物力学模型的正碰损伤对比[J]. 吉林大学学报(工学版), 2022, 52(6): 1264-1272.
[11] 刘兴涛,刘晓剑,武骥,何耀,刘新天. 基于曲线压缩和极限梯度提升算法的锂离子电池健康状态估计[J]. 吉林大学学报(工学版), 2022, 52(6): 1273-1280.
[12] 张英朝,李昀航,郭子瑜,王国华,张喆,苏畅. 长头重型卡车气动减阻优化[J]. 吉林大学学报(工学版), 2022, 52(4): 745-753.
[13] 史文库,张曙光,张友坤,陈志勇,江逸飞,林彬斌. 基于改进海鸥算法的磁流变减振器模型辨识[J]. 吉林大学学报(工学版), 2022, 52(4): 764-772.
[14] 李杰,陈涛,郭文翠,赵旗. 汽车非平稳随机振动空间域虚拟激励法及应用[J]. 吉林大学学报(工学版), 2022, 52(4): 738-744.
[15] 李伟,宋海生,陆浩宇,史文库,王强,王晓俊. 复合材料板簧迟滞特性线性辨识方法[J]. 吉林大学学报(工学版), 2022, 52(4): 829-836.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!