吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (4): 1047-1059.doi: 10.13229/j.cnki.jdxbgxb.20210822

• 交通运输工程·土木工程 • 上一篇    

考虑能量消耗的纯电动物流车柔性时间窗路径规划问题

孙宝凤(),刘娇娇,姚天姿,任欣欣   

  1. 吉林大学 交通学院,长春 130022
  • 收稿日期:2021-08-25 出版日期:2023-04-01 发布日期:2023-04-20
  • 作者简介:孙宝凤(1970-),女,教授,博士.研究方向:智能物流系统规划与运筹优化.E-mail:sunbf@jlu.edu.cn
  • 基金资助:
    吉林省自然科学基金项目(20210101055JC)

Electric delivery vehicle routing problem with flexible time window integrated with energy consumption estimation

Bao-feng SUN(),Jiao-jiao LIU,Tian-zi YAO,Xin-xin REN   

  1. College of Transportation,Jilin University,Changchun 130022,China
  • Received:2021-08-25 Online:2023-04-01 Published:2023-04-20

摘要:

为提高物流企业收益,从模型驱动下的实验分析角度,研究了柔性时间窗约束下的纯电动物流车路径规划问题(EVRP-FlexTW)。首先,提出了考虑启动-制动的纯电动物流车能量消耗模型,揭示纯电动物流车在行驶过程中的能量消耗规律;其次,考虑了能量消耗的影响,增加车辆载重、柔性时间窗和耗电量等约束,建立了总配送成本最低的纯电动物流车路径优化模型,并设计了蚁群算法求解模型。行驶速度、柔性时间窗对决策目标的敏感性分析表明:减小纯电动物流车的最大行驶速度,会得到更好的路径规划结果;满足柔性时间窗约束虽然付出了更大的行驶距离和耗电量,但能够达成降低总配送成本的目标;上述发现体现了模型和算法的有效性。

关键词: 运输规划, 柔性时间窗, 纯电动物流车, 路径规划问题, 能量消耗估计模型

Abstract:

Vehicle Routing Problem (VRP) with flexible time window is useful to increase the profits of logistics companies by loosening the time constraints with less penalty cost. In this paper, the electric logistics vehicle routing problem with flexible time window (EVRP-FlexTW) is studied as a model driven experimental approach. Firstly, an energy consumption model considering the start-brake process is proposed for electric logistics vehicles to reveal their characteristics of energy consumption. Then the influence of energy consumption is integrated into the EVRP-FlexTW model with minimum total distribution cost in consideration in additional constraints such as vehicle loading capacity, flexible time window and electrical energy. The improved Ant Colony Algorithm is also designed to solve the model. Sensitivity analysis on the trip speed and flexible time window impact to the proposed model shows that reducing the maximum driving speed is generally contributed to get the better routing solution. Satisfying the constraints of flexible time window cannot shorten the distribution distance or reduce the electricity consumption of electric vehicles but can achieve the lowest total distribution cost. As a whole, those founding can come to the proposed model validation.

Key words: transportation planning, flexible time window, electric delivery vehicles, vehicle routing problem, energy consumption estimation model

中图分类号: 

  • N945.15

图1

单只蚂蚁构造可行解的流程"

表1

TC最低配送方案"

车辆编号行驶路径顺序route总载重Sumload/kg总耗电量E/(kW·h)总距离D/km总时间t/min
合计3696.16248.57623.591090.54
10→7→1→11→2→3→4→6→D→8→10→01289.2888.05221.36411.16
20→13→5→9→16→15→I→14→20→24→17→01363.20103.65258.18449.32
30→18→12→25→19→21→23→22→01043.6856.87144.05230.06

表2

不同vˉij下纯电动物流车的eˉij (kW·h)"

vˉijdˉij=50 mdˉij=200 mdˉij=350 mdˉij=500 mdˉij=650 mdˉij=800 mdˉij=900 mdˉij=990 m
变速48 km/h0.0740.1880.2280.2670.3060.3460.3720.309
54 km/h0.0750.2280.2720.3150.3590.4030.4070.342
60 km/h0.0760.2920.3400.3890.4420.5100.4920.428
匀速48 km/h0.0130.0530.0920.1310.1710.2100.2360.260
54 km/h0.0150.0580.1020.1460.1900.2330.2620.289
60 km/h0.0160.0650.1130.1620.2100.2590.2910.320

图2

不同vˉij下纯电动物流车的eˉij"

图3

vˉ2ij与eˉij的线性回归"

表3

不同vˉij条件下求解结果对比"

vˉij/(km·h-1n*/辆D/kmWE/(kW·h)TC/元
603648.470.782298.37832.42
543623.590.789248.56783.65
483542.80.791184.99618.48
423576.920.792168.97493.29
363593.260.790147.63443.33
304639.480.497148.44619.87

表4

柔性时间窗系数组合求解结果对比"

客户数量N时间窗系数组合n*/辆D/kmWE/(kW·h)TC/元
15(1)pi=0.25,(Ce,Cd)=(0.5,1.0)2422.420.703166.47536.86
(2)pi=0.50,(Ce,Cd)=(0.5,1.0)2407.330.706160.90502.02
(3)pi=0.25,(Ce,Cd)=(2.0,4.0)2429.270.697168.82599.21
(4)pi=0.50,(Ce,Cd)=(2.0,4.0)2425.210.705167.15562.89
(5)pi,(Ce,Cd)=(0.5,1.0)2364.100.702143.42603.82
(6)pi,(Ce,Cd)=(2.0,4.0)2430.640.706169.43851.50
25(7)pi=0.25,(Ce,Cd)=(0.5,1.0)3623.590.789248.56783.64
(8)pi=0.50,(Ce,Cd)=(0.5,1.0)3579.060.790230.75762.18
(9)pi=0.25,(Ce,Cd)=(2.0,4.0)3628.040.778259.111255.07
(10)pi=0.50,(Ce,Cd)=(2.0,4.0)3604.930.790240.76751052.62
(11)pi,(Ce,Cd)=(0.5,1.0)3606.350.788241.63983.73
(12)pi,(Ce,Cd)=(2.0,4.0)3688.390.789274.58641418.52
1 新能源汽车舆情中心. 2017年电动物流车产销或现“井喷” [EB/OL]. [2021-01-23]. .
2 李明. 从政策法规层面浅析纯电动物流车发展趋势[J]. 科技资讯, 2018, 16(8): 92-93.
Li Ming. Analyze the development trend of pure electric logistics vehicle from the level of policies and regulations[J]. Science & Technology Information, 2018, 16(8): 92-93.
3 中共中央国务院. 交通强国建设纲要[EB/OL]. [2021-01-16].交通强国建设纲要.
4 Demir E, Bektaş T, Laporte G. A review of recent research on green road freight transportation[J]. European Journal of Operational Research, 2014, 237(3): 775-793.
5 Schneider M, Stenger A, Goeke D. The electric vehicle routing problem with time windows and recharging stations[J]. Transport Science, 2014, 48(4): 500-520.
6 Schiffer M, Schneider M, Laporte G. Designing sustainable mid-haul logistics networks with intra-route multi-resource facilities[J]. European Journal of Operational Research, 2018, 265(2): 517-532.
7 Macrina G, Pugliese L D P, Guerriero F, et al. The green mixed fleet vehicle routing problem with partial battery recharging and time windows[J]. Computers & Operations Research, 2019, 101: 183-199.
8 Bektas T, Laporte G. The pollution-routing problem[J]. Transportation Research Part B: Methodological, 2011, 45(8): 1232-1250.
9 Goeke D, Schneider M. Routing a mixed fleet of electric and conventional vehicles[J]. European Journal of Operational Research, 2015, 245(1): 81-99.
10 Turkensteen M. The accuracy of carbon emission and fuel consumption computations in green vehicle routing[J]. European Journal of Operational Research, 2017, 262(2): 647-659.
11 Bassoa R, Kulcsárb B, Egardtb B, et al. Energy consumption estimation integrated into the electric vehicle routing problem[J]. Transportation Research Part D: Transport and Environment, 2019, 69(4): 141-167.
12 王琪瑛, 李英, 李惠. 带软时间窗的电动车换电站选址路径问题研究[J]. 工业工程与管理, 2019, 24(3): 99-106.
Wang Qi-ying, Li Ying, Li Hui. Battery swap location-routing problem of electric vehicles with soft time windows[J]. Industrial Engineering and Management, 2019, 24(3): 99-106.
13 Hiermann G, Puchinger J, Ropke S, et al. The electric fleet size and mix vehicle routing problem with time windows and recharging stations[J]. European Journal of Operational Research, 2016, 252(3): 995-1018.
14 Taş D, Jabali O, Woensel T V. A vehicle routing problem with flexible time windows[J]. Computers & Operation Research, 2014, 52(A): 39-54.
15 Zhang H Z, Zhang Q W, Ma L, et al. A hybrid ant colony optimization algorithm for a multi-objective vehicle routing problem with flexible time windows[J]. Information Sciences, 2019, 490: 166-190.
16 葛斌. 求解车辆路径问题的蚁群优化算法研究及应用[D]. 合肥: 合肥工业大学计算机与信息学院,2016.
Ge Bin. Research and application of ant colony optimization algorithm in solving the vehicle routing problem[D]. Hefei: School of Computer Science and Information Engineering, Hefei University of Technology, 2016.
17 陈宝文. 蚁群优化算法在车辆路径问题中的应用研究[D]. 哈尔滨: 哈尔滨工业大学航天学院, 2009.
Chen Bao-wen. Application of ant colony optimization in vehicle routing problems[D]. Harbin: School of Astronautics, Harbin Institute of Technology, 2009.
18 刘云忠, 宣慧玉. 蚂蚁算法在带时间窗车辆路径问题中的应用研究[C]∥中国运筹学会第七届学术交流会, 北京,中国,2004: 8-15.
Liu Yun-zhong, Xuan Hui-yu. Application research of the ant algorithm to vehicle routing problem with time windows[C]∥The 7th Conference of Operations Research Society of China, Beijing,China, 2004: 8-15.
19 王永聪. 基于纯电动汽车的城市配送车辆路径问题研究[D]. 北京: 北京交通大学交通运输学院, 2016.
Wang Yong-cong. Research on vehicle routing problem of city distribution based on pure electric vehicle[D]. Beijing: School of Traffic and Transportation, Beijing Jiaotong University, 2016.
20 宋稚雅. 基于纯电动物流车的城市配送车辆路径问题研究[D]. 北京: 北京交通大学经济与管理学院, 2019.
Song Zhi-ya. Study on urban distribution vehicle routing problem based on pure electric logistics vehicle[D]. Beijing: School of Economics and Management, Beijing Jiaotong University, 2019.
[1] 胡莹,邵春福,王书灵,蒋熙,孙海瑞. 基于共享单车骑行轨迹的骑行质量识别方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1040-1046.
[2] 王占中,蒋婷,张景海. 基于模糊双边界网络模型的道路运输效率评价[J]. 吉林大学学报(工学版), 2023, 53(2): 385-395.
[3] 孙宝凤,姚天姿,陈雨琦. 考虑时变交通拥堵的纯电动物流车路径规划模型[J]. 吉林大学学报(工学版), 2023, 53(2): 468-479.
[4] 闫云娟,查伟雄,石俊刚,李剑. 具有随机充电需求的混合动态网络平衡模型[J]. 吉林大学学报(工学版), 2022, 52(1): 136-143.
[5] 户佐安,夏一鸣,蔡佳,薛锋. 延误条件下综合多种策略的城轨列车运行调整优化[J]. 吉林大学学报(工学版), 2021, 51(5): 1664-1672.
[6] 李浩,陈浩. 考虑充电排队时间的电动汽车混合交通路网均衡[J]. 吉林大学学报(工学版), 2021, 51(5): 1684-1691.
[7] 朱才华,孙晓黎,李岩. 站点分类下的城市公共自行车交通需求预测[J]. 吉林大学学报(工学版), 2021, 51(2): 531-540.
[8] 罗清玉,田万利,贾洪飞. 考虑通勤需求的电动汽车充电站选址与定容模型[J]. 吉林大学学报(工学版), 2019, 49(5): 1471-1477.
[9] 曹骞, 李君, 刘宇, 曲大为. 基于马尔科夫链的长春市乘用车行驶工况构建[J]. 吉林大学学报(工学版), 2018, 48(5): 1366-1373.
[10] 孙宝凤, 高坤, 申琇秀, 梁婷. 基于能力平衡和变覆盖半径的加油站网络扩充选址模型[J]. 吉林大学学报(工学版), 2018, 48(3): 704-711.
[11] 徐亮,程国柱. 基于车速离散度和经济车速的高速公路最低车速限制[J]. 吉林大学学报(工学版), 2010, 40(03): 661-0665.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!