吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (4): 1163-1173.doi: 10.13229/j.cnki.jdxbgxb.20210792
• 计算机科学与技术 • 上一篇
欧阳丹彤1,2(),孙睿2,3,田新亮1,2,张立明1,2(),刘萍萍1,2
Dan-tong OUYANG1,2(),Rui SUN2,3,Xin-liang TIAN1,2,Li-ming ZHANG1,2(),Ping-ping LIU1,2
摘要:
选择一组能够检测并隔离所有故障的故障检测隔离集(FDIS)是动态系统基于模型故障检测与隔离(FDI)的重要步骤,该步骤通常要求FDIS的基数最小,即求解最小故障检测隔离集(MFDIS),MFDIS的求解时间随着问题规模增大呈指数级增长。BILP(Binary integer linear programming)完备方法是现行动态系统中通用和最高效的MFDIS求解方法,但该方法的求解效率有待提高。本文首次提出了基于部分最大可满足性问题(PMS)的MFDIS求解方法。提出极小超定方程集(MSO)的概念,将部分MSO集合用MSO等价集表示,以缩减问题规模。将MFDIS求解问题转化为PMS问题,进而提高求解效率。实验结果表明,本文方法将问题规模平均约简至原来的8.22%;与BILP方法相比,本文方法的求解效率提高了4.18~9.5倍。
中图分类号:
1 | Hwang I, Kim S, Kim Y, et al. A survey of fault detection, isolation, and reconfiguration methods[J]. IEEE Transactions on Control Systems Technology, 2010, 18(3): 636-653. |
2 | De Kleer J, Williams B C. Diagnosing multiple faults[J]. Artificial Intelligence, 1987, 32(1): 97-130. |
3 | 欧阳丹彤, 刘伯文, 刘梦, 等. 结合电路结构基于分块的诊断方法[J]. 电子学报, 2018, 46(7): 38-44. |
Ouyang Dan-tong, Liu Bo-wen, Liu meng, et al. A block-based diagnostic method combinbing with the circuit structure[J]. Acta Electronica Sinica, 2018, 46(7): 38-44. | |
4 | Svard C, Nyberg M, Frisk E, et al. Realizability constrained selection of residual generators for fault diagnosis with an automotive engine application[J]. IEEE Transactions on Systems, 2013, 43(6): 1354-1369. |
5 | Falkenberg T, Gregersen R, Blanke M. Navigation system fault diagnosis for underwater vehicle[J].IFAC-Papers on Line, 2014, 47(3): 9654-9660. |
6 | Svard C, Nyberg M. Automated design of an FDI-system for the wind turbine benchmark [J]. IFAC-Papers on Line, 2011, 44(1): 8307-8315. |
7 | Jung D. A generalized fault isolability matrix for improved fault diagnosability analysis[C]//The 3rd Conference on Control and Fault-Tolerant Systems (SysTol), Barcelona, Spain, 2016: 519-524. |
8 | Sankavaram C, Kodali A, Pattipati K R, et al. Incremental classifiers for data-driven fault diagnosis applied to automotive systems[J]. IEEE Access, 2015, 3: 407-419. |
9 | Jung D, Sundström C. A combined data-driven and model-based residual selection algorithm for fault detection and isolation[J]. IEEE Transactions on Control Systems, 2019, 27(2): 616-630. |
10 | Frisk E, Krysander M. Residual selection for consistency based diagnosis using machine learning models[J]. IFAC-Papers on Line, 2018, 51(24): 139-146. |
11 | Jung D, Frisk E. Residual selection for fault detection and isolation using convex optimization[J]. Automatica, 2018, 97: 143-149. |
12 | 田乃予, 欧阳丹彤, 刘梦, 等. 基于子集一致性检测的诊断解极小性判定方法[J]. 计算机研究与发展, 2019, 56(7): 1396-1407. |
Tian Nai-yu, Ouyang Dan-tong, Liu Meng, et al. A method of minimality-checking of fiagnosis based on subset consistency detection[J]. Journal of Computer Research and Development, 2019, 56(7): 1396-1407. | |
13 | Nejjari A F, Sarrate E R, Rosich O A.Optimal sensor placement for fuel cell system diagnosis using BILP formulation[C]∥The 18th Mediterranean Conference on Control and Automation, Marrakech, Morocco, 2010: 1296-1301. |
14 | Khorasgani H, Biswas G. Structural fault detection and isolation in hybrid systems[J]. IEEE Transactions on Automation Science and Engineering, 2018, 15(4): 1585-1599. |
15 | Pérez-Zuiga G, Rivas-Perez R, Sotomayor J, et al. Fault detection and isolation system based on structural analysis of an industrial seawater reverse osmosis desalination plant[J]. Processes, 2020, 8(9): 1100. |
16 | Khorasgani H, Biswas G, Jung D. Minimal structurally overdetermined sets selection for distributed fault detection[C]∥Proceedings of the 26th International Workshop on Principles of Diagnosis, Paris, France, 2015: 75-82. |
17 | Krysander M, Åslund J, Nyberg M. An efficient algorithm for finding minimal over-constrained sub-systems for model-based diagnosis[J]. IEEE Trans on Systems,Man and Cybernetics–Part A: Systems and Humans, 2008, 38(1): 197-206. |
18 | Svard C, Nyberg M. Residual generators for fault diagnosis using computation sequences with mixed causality applied to automotive systems[J]. IEEE Transactions on Systems, Man and Cybernetics–Part A: Systems and Humans, 2010, 40(6): 1310-1328. |
19 | Blanke M, Kinnaert M, Lunze J, et al. Diagnosis and fault-tolerant control[M]. Berlin: Springer, 2006. |
20 | Krysander M, Åslund J, Frisk E. A structural algorithm for finding testable sub-models and multiple fault isolability analysis[C]∥The 21st International Workshop on Principles of Diagnosis (DX-10), Portland, USA, 2010: |
21 | Reiter R. A theory of diagnosis from first principles [J].Artificial Intelligence, 1987, 32(1): 57-96. |
22 | Frisk E, Krysander M, Jung D. A toolbox for analysis and design of model based diagnosis systems for large scale models[J]. IFAC-Papers on Lines, 2017, 50(1): 3287-3293. |
23 | Robinson J A, Davis M, Logemann G, et al. A machine program for theorem-proving[J]. Journal of Symbolic Logic, 1967, 32(1): 118-394. |
24 | Cai S W, Luo C, Zhang H. From decimation to local search and back: a new approach to MaxSAT[C]∥Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne,Australia, 2017: 571-577. |
25 | 刘思光, 欧阳丹彤, 王艺源,等. 结合SE-Tree结构特征的极小碰集求解算法[J]. 计算机研究与发展, 2016, 53(11): 2556-2566. |
Liu Si-guang, Ouyang Dan-tong, Wang Yi-yuan, et al. Minimal collision set solving algorithm combined with SE-Tree structural features[J]. Journal of Computer Research and Development,2016, 53(11): 2556-2566. | |
26 | Koshimura M, Zhang T, Fujita H, et al. Qmaxsat: a partial max-sat solver[J]. Journal on Satisfiability Boolean Modeling & Computation,2012,8(1/2): 95-100. |
27 | Dulmage A L, Mendelsohn N S. Coverings of bipartite graphs[J]. Canadian Journal of Mathematics, 1958, 10: 517-534. |
[1] | 欧阳丹彤,孙睿,田新亮,高博涵. 基于集合阻塞的不确定系统中传感器选择方法[J]. 吉林大学学报(工学版), 2023, 53(2): 547-554. |
[2] | 王晓宇,欧阳丹彤,赵剑. 基于诊断器的可诊断性增量测试方法[J]. 吉林大学学报(工学版), 2015, 45(1): 222-228. |
[3] | 欧阳丹彤, 耿雪娜, 郭劲松, 王晓宇. 基于矩阵计算极小碰集的启发式算法[J]. 吉林大学学报(工学版), 2013, 43(01): 106-110. |
[4] | 欧阳丹彤,焦玉,赵相福. 基于ATMS的冲突识别及诊断测量方法[J]. 吉林大学学报(工学版), 2009, 39(06): 1601-1606`. |
|