吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (1): 222-228.doi: 10.13229/j.cnki.jdxbgxb201501033

• 论文 • 上一篇    下一篇

基于诊断器的可诊断性增量测试方法

王晓宇1,2,欧阳丹彤1,2,赵剑2   

  1. 1.吉林大学 计算机科学与技术学院,长春,130012;
    2.吉林大学 符号计算与知识工程教育部重点实验室,长春,130012
  • 收稿日期:2013-09-06 出版日期:2015-02-01 发布日期:2015-02-01
  • 通讯作者: 欧阳丹彤(1967),女,教授,博士生导师.研究方向:自动推理,基于模型诊断.E-mail:ouyangdantong@163.com
  • 作者简介:王晓宇(1984),女,博士研究生.研究方向:基于模型诊断.E-mail:wxyjldx@163.com
  • 基金资助:
    国家自然科学基金项目(61133011,60973089,61003101,61170092);吉林省科技发展计划项目 (20101501,20100185);教育部博士学科点专项科研基金项目(20100061110031);浙江师范大学计算机软件与理论省级重中之重学科开放基金项目(ZSDZZZZXK12);浙江省自然科学基金项目 (Y1100191).

Diagnoser-based incremental method of determining diagnosability

WANG Xiao-yu1,2,OUYANG Dan-tong1,2,ZHAO Jian2   

  1. 1.College of Computer Science and Technology, Jilin University, Changchun 130012,China;
    2.Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Changchun 130012,China
  • Received:2013-09-06 Online:2015-02-01 Published:2015-02-01

摘要: 在离散事件系统的基于模型诊断中,提出了一种增量的可诊断性判定方法,用于提高可诊断性判定的效率。通过在状态上反向传播故障标签的方法,建立预诊断器。在预诊断器模型上,结合虚拟在线的观测窗口,增量进行可诊断性判断,决定是否对当前状态剪枝。提出增量算法,并证明该算法的正确性。 实验验证增量可诊断性算法的效率,并实验研究了增量窗口大小对增量可诊断性判定效率的影响。

关键词: 人工智能, 基于模型诊断, 可诊断性, 增量方法

Abstract: In model based diagnosis of discrete event system, an incremental method is proposed to determine the diagnosability and improve the efficiency of determining diagnosability. By reversely spreading the faulty labels on states, the pre-diagnoser is built. Then based on the diagnoser and the virtual online observation windows, the diagnosability is determined incrementally, and it is decided whether to prune the current state and return the result of diagnosability. An incremental algorithm is proposed and its correctness is proved. The experiment not omnly verifies the efficiency of the incremental algorithm but also tests the relationship between the size of the observation windows and the efficiency of determining diagnosability.

Key words: artificial intelligence, model-based diagnosis, diagnosability, incremental method

中图分类号: 

  • TP18
[1] Pencole Y, Cordier M O. A formal framework for the decentralised diagnosis of large scale discreteevent systems and its application to telecommunication networks[J]. Artificial Intelligence, 2005, 164(1): 121-170.
[2] Hayden S, Sweet A,Christa S. Livingstone model-based diagnosis of earth observing one[C]∥Proceedings of AIAA 1st Intelligent Systems Conference,2004.
[3] Sampath M, Sengupta R, Lafortune S, et al. Diagnosability of discrete-event systems[J]. IEEE Transactions on Automatic Control, 1995, 40(9): 1555-1575.
[4] Sampath M,Sengupta R, Lafortune S,et al.Failure diagnosis usingdiscrete-event models[J].IEEE Transactions on Control Systems Technology,1996,4(2):105-124.
[5] Jiang S, Huang Z, Chandra V, et al. A polynomial algorithm for testing diagnosability of discrete-event systems[J]. IEEE Transactions on Automatic Control, 2001, 46(8): 1318-1321.
[6] Grastien A. Symbolic testing of diagnosability[C]∥International Workshop on Principles of Diagnosis, 2009.
[7] Jeron T,Marchand H, Pinchinat S,et al.Supervision patterns in discrete event systems diagnosis[C]∥The 8th International Workshop on Discrete Event Systems,2006.
[8] Ye L, Dague P. Diagnosability analysis of discrete event systems with autonomous components[C]∥ECAI, 2010:105-110.
[9] Ye L, Dague P. A general algorithm for pattern diagnosability of distributed discrete event systems[C]∥IEEE 24th International Conference on Tools with Artificial Intelligence (ICTAI), 2012: 130-137.
[10] Debouk R, Lafortune S, Teneketzis D. Coordinated decentralized protocols for failure diagnosis of discrete event systems[J]. Discrete Event Dynamic Systems, 2000, 10(1-2): 33-86.
[11] Pencole Y, Cordier M O, Roze L. A decentralized model-based diagnostic tool for complex systems[J]. International Journal on Artificial Intelligence Tools, 2002, 11(3):327-346.
[12] Provan G. Distributed diagnosability properties of discrete event systems[C]∥Proceedings of the American Control Conference, 2002: 134-139.
[13] Rudie K, Lafortune S, Lin F. Minimal communication in a distributed discrete-event system[J]. IEEE Transactions on Automatic Control, 2003, 48(6): 957-975.
[14] Ye L, Dague P. New results for joint diagnosability of self-observed distributed discrete event systems[C]∥The 23rd International Workshop on Principles of Diagnosis, 2002: 131-138.
[15] Cassez F. The complexity of codiagnosability for discrete event and timed systems[J]. IEEE Transactions on Automatic Control, 2012, 57(7): 1752-1764.
[1] 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577.
[2] 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585.
[3] 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[4] 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[5] 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[6] 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[7] 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[8] 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[9] 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[10] 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[11] 曲慧雁, 赵伟, 秦爱红. 基于优化算子的快速碰撞检测算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
[12] 李嘉菲, 孙小玉. 基于谱分解的不确定数据聚类方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
[13] 邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋. 无平衡点分数阶混沌系统全状态自适应控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[14] 王生生, 王创峰, 谷方明. OPRA方向关系网络的时空推理[J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243.
[15] 马淼, 李贻斌. 基于多级图像序列和卷积神经网络的人体行为识别[J]. 吉林大学学报(工学版), 2017, 47(4): 1244-1252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!