吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (4): 1187-1199.doi: 10.13229/j.cnki.jdxbgxb.20210811

• 通信与控制工程 • 上一篇    

基于猫群算法的震动感知周界安防系统

周求湛1(),冀泽宇1,王聪1(),胡继康1,李明明2,陈禹竺1,周险峰3,4,刘萍萍5   

  1. 1.吉林大学 通信工程学院,长春 130012
    2.吉林大学 大数据与管理中心,长春 130012
    3.吉林大学 地球信息探测仪器教育部重点实验室,长春 130061
    4.吉林大学 仪器科学与电气工程学院,长春 130061
    5.吉林大学 计算机科学与技术学院,长春 130012
  • 收稿日期:2021-08-22 出版日期:2023-04-01 发布日期:2023-04-20
  • 通讯作者: 王聪 E-mail:13504465154@163.com;wangcong2020@jlu.edu.cn
  • 作者简介:周求湛(1974-),男,教授,博士.研究方向:微弱信号检测.E-mail:13504465154@163.com
  • 基金资助:
    国家自然科学基金项目(62071199);吉林省自然科学基金项目(20200201283JC)

Seismic sensing perimeter security system based on cat swarm algorithm

Qiu-zhan ZHOU1(),Ze-yu JI1,Cong WANG1(),Ji-kang HU1,Ming-ming LI2,Yu-zhu CHEN1,Xian-feng ZHOU3,4,Ping-ping LIU5   

  1. 1.College of Communication Engineering,Jilin University,Changchun 130012,China
    2.Big Data & Management Center,Jilin University,Changchun 130012,China
    3.Key Laboratory of Geoexploration Instrumentation of Ministry of Education,Jilin University,Changchun 130061,China
    4.College of Instrumentation & Electrical Engineering,Jilin University,Changchun 130061,China
    5.College of Computer Science and Technology,Jilin University,Changchun 130012,China
  • Received:2021-08-22 Online:2023-04-01 Published:2023-04-20
  • Contact: Cong WANG E-mail:13504465154@163.com;wangcong2020@jlu.edu.cn

摘要:

针对传统周界安防系统入侵目标定位方法定位精度较差且常用的基于信号到达时间差(TDOA)定位方法在面对多组传感器情况难以确定最优解的问题,本文设计了基于猫群算法的震动感知智能周界安防系统。首先利用动圈式振动传感器采集入侵目标在浅地表产生的振动信号,并通过振动信号对入侵目标进行TDOA定位。然后通过猫群算法对TDOA初步定位结果进行优化。最后针对系统的不同应用场景,本文设计实现LoRa无线通信和北斗短报文无线通信两种通信模式,解决了系统在偏远地区部署的通信问题。为验证本文算法的有效性,设计了不同算法参数环境下的验证实验以及在实际环境下的测试实验。结果表明:本文算法优化的目标定位方法在浅地表震动波传播速度误差小于自身10%的情况下,平均定位误差小于1 m。算法定位误差相较于TDOA初步定位结果减小约46.9%。

关键词: 通信与信息系统, 周界安防, TDOA定位, 群体智能, 猫群算法

Abstract:

Traditional perimeter-security systems either suffer from low positioning accuracy of the target or cannot determine the optimal result generated by multiple groups of sensors in common TDOA. In response to the above issues, this paper designs an intelligent perimeter-security system, by means of seismic sensors and cat-swarm algorithm. First, moving coil seismic sensors are used for collecting the seismic signals generated by targets on shallow surfaces. Then, the collected signals are processed to obtain initial TDOA localization results of the target. Later, these initial results are further optimized via cat-swarm algorithm. Aiming at different application scenarios of the system, this paper designs two communication modes (i.e., LoRa and Beidou short message) to ensure system communication in remote regions. In order to verify the effectiveness of the optimization algorithm, several experiments are conducted in real world under different parameter settings. According to the experimental results, when the error in propagation velocity of seismic wave is less 10%, the average localization error of the proposed system (i.e., optimized by cat-swarm algorithm) is less 1 meter. In particular, compared with the initial TDOA localization results, the localization error is reduced by 46.9%.

Key words: communication and information system, perimeter-security, TDOA location, swarm intelligence, cat-swarm algorithm

中图分类号: 

  • TP274

图1

群体智能周界安防系统架构"

图2

群体智能周界安防系统实物图"

图3

猫群算法流程图"

图4

实际系统组成图"

图5

系统上位机配置软件"

图6

系统传感器布设示意图"

图7

猫群算法优化前后的TDOA定位结果"

表1

不同位置模拟数据算法优化结果"

目标位置TDOA横坐标TDOA纵坐标最优解与震源距离/m
优化前优化后
(7.5,2.5)6~71~20.83260.0272
(7.5,2.5)8~93~40.83060.0445
(7.5,2.5)6~73~40.87820.0309

图8

传感器菱形布设示意图"

图9

传感器圆形布设示意图"

表2

传感器菱形布设方式模拟数据算法优化结果"

目标位置TDOA横坐标范围TDOA纵坐标范围优化前最优解与震源距离/m优化后最优解与震源距离/m
(10,10)9~109~100.21680.0120
(10,10)9~1010~110.15630.1044
(10,10)10~119~100.39240.1562
(10,10)10~1110~110.16430.1518
(10,10)9~119~110.15590.0150

表3

传感器圆形布设方式模拟数据算法优化结果"

目标位置TDOA横坐标范围TDOA纵坐标范围优化前最优解与震源距离/m优化后最优解与震源距离/m
(10,10)9~109~100.13270.0073
(10,10)9~1010~110.30370.1315
(10,10)10~119~100.27490.0925
(10,10)10~1110~110.18460.1277
(10,10)9~119~110.08540.0036

表4

随机布设方式模拟数据算法优化结果"

目标位置TDOA横坐标范围TDOA纵坐标范围优化前最优解与震源距离/m优化后最优解与震源距离/m
(10,10)9~109~100.13410.0182
(10,10)9~1010~110.30980.0972
(10,10)10~119~100.32540.1211
(10,10)10~1110~110.16910.1588
(10,10)9~119~110.40140.0435

图10

不同速度误差下猫群算法误差"

表5

不同震动波速度误差下50次定位结果误差"

速度误差范围50次定位结果中误差最大值/m50次定位结果中误差最小值/m50次定位结果中误差均值/m
00.20510.000210.0437
5%1.05650.02130.3879
10%2.78610.00710.7610
20%5.66610.05931.9049

图11

猫群算法优化前后的TDOA定位结果"

表6

不同迭代次数下优化算法的执行时间"

迭代次数算法执行时间/s
500.4992
1000.9318
5004.3264
10008.3203

图12

猫群算法优化前后定位结果对比"

图13

3种算法优化后定位结果对比"

图14

3种算法进化曲线对比"

1 Filipiak J, Steczko G, Kostrzewa S, et al. Perimeter security system based on SAW vibration sensor[J]. Acta Physica Polonica A, 2015, 128(3): 408-413.
2 Ma P F, Liu K, Jiang J F, et al. Probabilistic event discrimination algorithm for fiber optic perimeter security systems[J]. Journal of Lightwave Technology, 2018, 11(1): 2069-2075.
3 Liu K, Miao T, Liu T, et al. A high-efficiency multiple events discrimination method in optical fiber perimeter security[J]. Journal of Lightwave Technology, 2015, 33(23): 4885-4890.
4 李克成. 基于MEMS传感器的周界安防系统研究与设计[D]. 沈阳:东北大学机械工程与自动化学院, 2016.
Li Ke-cheng. Research and design of perimeter-security System based on MEMS sensor[D]. Shenyang: School of Mechanical Engineering and Automation, Northeastern University, 2016.
5 周丹. 混合策略粒子群优化算法的研究及应用[D]. 无锡:江南大学人工智能与计算机学院, 2016.
Zhou Dan. Research and application of hybrid strategy particle swarm optimization algorithm[D]. Wuxi: School of Artificial Intelligence and Computer Science, Jiangnan University, 2016.
6 Wei Dong, Wang Zhong-bin, Si Lei, et al. Preaching inspired swarm intelligence algorithm and its applications[J]. Knowledge-Based Systems, 2021, 211: No. 106552.
7 吕辰. 基于MARG无人机姿态测量系统的实时融合算法研究[D]. 太原:中北大学电子测试技术科技重点实验室, 2018.
Lv Chen. Research on real-time fusion algorithm based on MARG UAV attitude measurement system[D]. Taiyuan: Key Laboratory of Electronic Testing Technology Science and Technology, North University of China, 2018.
8 Zhao L, Qu S C, Zhang W G. Design of multi-channel data collector for highway tunnel lighting based on STM32 and modbus protocol[J]. Optik International Journal for Light and Electron Optics, 2020, 213: No. 164388.
9 Zhu You-chan, Zhang Wen-hua. Design and implementation on of intelligent greenhouse system based on STM32[J]. International Core Journal of Engineering, 2020, 6(7): 340-345.
10 陈宇翔. LoRa应用关键技术研究[D]. 杭州:杭州电子科技大学计算机学院, 2019.
Chen Yu-xiang. Research on key technologies of LoRa application[D]. Hangzhou: School of Computer Science, Hangzhou Dianzi University, 2019.
11 Liu Chao-tao, Su Xuan-chao, Liu Tang-zhi, et al. Design and application of intelligent traffic guidance system for fog area based on LoRa[J]. Journal of Physics: Conference Series, 2019, 1168(2): No. 022088.
12 Zhang Li, Li Da, Liu Hui-xi, et al. Research on method of reducing alarm delay time of lora technology in laboratory monitoring system[J]. Application of Electronic Technique, 2019, 45(6): 135-140.
13 黄新源. 基于LoRa的城市环境室外定位方法研究与实现[D]. 成都:电子科技大学电子科学与工程学院, 2020.
Huang Xin-yuan. Research and implementation of outdoor location method of urban environment based on LoRa[D]. Chengdu: School of Electronic Science and Engineering, University of Electronic Science and Technology of China, 2020.
14 Yong Wu, Li Li, Li Min-zan, et al. Remote-control system for greenhouse based on open source hardware[J]. IFAC-PapersOnLine, 2019, 52(30): 178-183.
15 Chen Hai-sheng, Guo Xiao-yun, Wang Feng, et al. Fishery harvesting information compressing and transmitting method based on beidou short message[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22): 155-160.
16 周志军,孙志敏,王政嘉,等.一种基于GPS/BD 组合系统的ETC收费方法、装置及计算机设备[P]. 中国 专利, CN202010747351.4, 2020.
17 信方硕. 基于北斗短报文的卫星远程教育系统资源订阅协议[D]. 呼和浩特:内蒙古大学电子信息工程学院, 2019.
Xin Fang-shuo. Resource subscription protocol of satellite distance education system based on BeiDou short message[D]. Hohhot: School of Electronic and Information Engineering, Inner Mongolia University, 2019.
18 刘飞, 林琳, 徐文江. 基于北斗RDSS的监视数据传输技术研究[J]. 信息技术, 2020, 44(1): 15-19, 25.
Liu Fei, Lin Lin, Xu Wen-jiang. Monitoring data transmission technology based on Beidou RDSS[J]. Information Technology, 2020, 44(1): 15-19, 25.
19 孙晋. 基于北斗短报文和RT-Thread的远程通信系统设计[D]. 南京:南京信息工程大学电子与信息工程学院, 2020.
Sun Jin. Design of telecommunication system based on BeiDou short message and RT-Thread[D]. Nanjing: School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, 2020.
20 翁星. 群体智能在无线传感器网络定位中的研究与应用[D]. 南京: 南京邮电大学电子与光学工程学院, 2015.
Weng Xing. Research and application of swarm intelligence in wireless sensor network localization[D]. Nanjing: School of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, 2015.
21 李昂, 付敬奇, 沈华明, 等. 基于模糊聚类和猫群算法的室内定位算法[J]. 仪器仪表学报, 2020, 41(1): 185-194.
Li Ang, Fu Jing-qi, Shen Hua-ming, et al. Indoor location algorithm based on fuzzy clustering and cat swarm algorithm[J]. Chinese Journal of Scientific Instrument, 2020, 41(1): 185-194.
22 Ahmedaram M, Rashidtarik A, Saeedsoran A M. Cat swarm optimization algorithm: a survey and performance evaluation[J]. Computational Intelligence and Neuroscience, 2020, 2020(1): 1-21.
23 Katsaragakis I, Tassopoulos I, Beligiannis G N. Solving the urban transit routing problem using a cat swarm optimization-based algorithm[J]. Algorithms, 2020, 13(9): 223.
24 Tsai P W, Istanda V. Review on cat swarm optimization algorithms[C]//The 3rd International Conference on Consumer Electronics, Communications and Networks, Xianning, China, 2013: 564-567.
25 Sharafi Y, Khanesar M A, Teshnehlab M. Discrete binary cat swarm optimization algorithm[C]//The 3rd IEEE International Conference on Computer, Control and Communication, Karachi, Pakistan, 2013: 1-6.
26 Tsai P W, Kong L, Vaclav S, et al. Utilizing cat swarm optimization in allocating the sink node in the w-ireless sensor network environment[C]//Third International Conference on Computing Measurement Control and Sensor Network, Matsue, Japan, 2017: 166-169.
27 Broderick C, Ricardo S, Natalia B, et al. A binary cat swarm optimization algorithm for the non-unicost set covering problem[J]. Mathematical Problems in Engineering, 2015, 2015(2): 1-8.
28 朱旭芳, 颜冰, 马剑飞. 基于序列相关检测法的地震波传播速度测量方法[J]. 海军工程大学学报, 2017, 29(3): 87-91.
Zhu Xu-fang, Yan Bing, Ma Jian-fei. Seismic wave velocity measurement method based on sequence correlation detection method[J]. Journal of Naval University of Engineering, 2017, 29(3): 87-91.
29 彭琨. 光纤周界安防系统模式识别体系的研究与实现[D]. 北京:北京邮电大学自动化学院, 2017.
Peng Kun. Research and realization of pattern recognition system for fiber perimeter security system[D]. Beijing: School of Automation, Beijing University of Posts and Telecommunications, 2017.
[1] 潘弘洋,刘昭,杨波,孙庚,刘衍珩. 基于新一代通信技术的无人机系统群体智能方法综述[J]. 吉林大学学报(工学版), 2023, 53(3): 629-642.
[2] 孙洪亮,沈伟达,陈玲玲. 时延QoS约束下的混合业务带宽补偿算法[J]. 吉林大学学报(工学版), 2022, 52(8): 1912-1917.
[3] 陈建,于帆,林琳,孙铭会. 基于多阵列合成孔径的局部超声阵列聚焦方法[J]. 吉林大学学报(工学版), 2022, 52(10): 2447-2455.
[4] 侯春萍,赵春月,王致芃,田海瑞. 基于有效异常样本构造的视频异常检测算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1823-1829.
[5] 王义君,张有旭,缪瑞新,豆佳敏. 5G中基于系统中断概率的D2D资源分配算法[J]. 吉林大学学报(工学版), 2021, 51(1): 331-339.
[6] 胡钊政,李招康,陶倩文. 基于分布式二维激光测距仪的室内行人检测与跟踪[J]. 吉林大学学报(工学版), 2020, 50(2): 719-729.
[7] 赵鹏,蒋宇中,陈斌,李春腾,张杨勇. 基于局部方差域自适应Blanking的超低频信道噪声抑制方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1696-1705.
[8] 杨茂, 李成凤, 田彦涛. 基于能量的一致环境下的社会群体觅食控制[J]. 吉林大学学报(工学版), 2010, 40(增刊): 349-0353.
[9] 杨永明,田彦涛. 基于区域分工机制的异构群体机器人觅食任务数学分析[J]. 吉林大学学报(工学版), 2008, 38(06): 1396-1401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!