吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (5): 1458-1464.doi: 10.13229/j.cnki.jdxbgxb.20220137

• 计算机科学与技术 • 上一篇    

基于加权质心定位的井下移动目标实时跟踪方法

张楠1(),史建华1,亿吉2,王平1   

  1. 1.山西大同大学 机电工程学院,山西 大同 037003
    2.山西大同大学 煤炭工程学院,山西 大同 037003
  • 收稿日期:2022-02-16 出版日期:2023-05-01 发布日期:2023-05-25
  • 作者简介:张楠(1981-),男,教授,硕士.研究方向:无线传感器网络在煤矿的应用.E-mail:zhangnan684@163.com
  • 基金资助:
    国家教育部2018年度产学合作协同育人项目(201802310022);山西省教育科学“十四五”规划课题(GH-21085);山西省高等学校哲学社会科学研究项目(2019W108)

Real⁃time tracking method of underground moving target based on weighted centroid positioning

Nan ZHANG1(),Jian-hua SHI1,Ji YI2,Ping WANG1   

  1. 1.College of Mechanical and Electrical Engineering,Shanxi Datong University,Datong 037003,China
    2.College of Coal Engineering,Shanxi Datong University,Datong 037003,China
  • Received:2022-02-16 Online:2023-05-01 Published:2023-05-25

摘要:

为保障井下作业人员的人身安全,提出基于WSNs加权质心定位的井下移动目标实时跟踪方法。确定传感器在井下布置方位和数量,并建立与邻居节点间的通信;选择和目标距离最近的节点形成定位边,利用加权质心定位算法赋予节点权值,并引入虚拟节点概念,计算虚拟节点位置估计移动目标具体位置;采用自主决策思想确定节点转换状态,根据状态设置跟踪过程,实现目标实时跟踪。结果证明:本文方法跟踪丢失率始终保持在0.02%以下,误差小,跟踪效率较高。

关键词: 无线传感器网络, 加权质心定位, 井下移动目标, 实时跟踪, 自主决策

Abstract:

In order to ensure the personal safety of underground operators, a real-time tracking method of underground moving target based on weighted centroid positioning of wireless sensor network is proposed. The location and number of sensors in the mine is determined, and communication with neighbor nodes is established; The node closest to the target is selected to form a positioning edge. The weighted centroid positioning algorithm is used to give the node weight. The concept of virtual node is introduced to calculate the virtual node position and estimate the specific location of the moving target. The autonomous decision-making approach is adopted to determine the node transition states, and a tracking process is established based on the states to achieve real-time tracking of the target.. The results show that the tracking loss rate of the proposed method is always less than 0.02%, the error is small, and the tracking efficiency is high.

Key words: wireless sensor network, weighted centroid positioning, underground moving target, real-time tracking, autonomous decision making

中图分类号: 

  • TP242

图1

WSN网络结构示意图"

表1

网络具体配置参数表"

参数类型参数取值
无线传感网络范围/(m×m)300×300
通信半径/m50
感应半径/m25
节点能量/J6
计算能耗/μJ20
数据传输能耗/μJ500
节点阈值能量/mJ1.5

图2

不同算法平均定位误差测试结果"

图3

不同算法移动目标跟踪轨迹图"

图4

不同算法无线传感器网络能耗对比结果"

图5

不同算法目标跟踪丢失率对比"

1 赵文杰, 汤新民, 黄忠涛, 等. 基于改进IMM算法的机场移动目标轨迹跟踪与预测[J]. 武汉理工大学学报: 交通科学与工程版, 2020, 44(3): 468-473, 479.
Zhao Wen-jie, Tang Xin-min, Huang Zhong-tao, et al. Track tracking and prediction of airport moving target based on improved IMM algorithm[J]. Journal of Wuhan University of Technology(Traffic Science and Engineering Edition), 2020, 44(3): 468-473, 479.
2 徐义晗. 基于无迹卡尔曼滤波的移动目标跟踪算法[J]. 火力与指挥控制, 2020, 45(12): 149-152.
Xu Yi-han. Unscented KF-based mobile target tracking algorithm[J]. Fire Control & Command Control, 2020, 45(12): 149-152.
3 刘子龙, 王晨. 基于双模态输入的孪生网络目标跟踪算法[J]. 计算机应用研究, 2021, 38(12): 3796-3800.
Liu Zi-long, Wang Chen. Target tracking algorithm in Siamese network based on bimodal input[J]. Application Research of Computers, 2021, 38(12): 3796-3800.
4 国强, 崔玉强, 王勇. 无线传感器网络中基于动态簇的节点调度算法[J]. 吉林大学学报: 工学版, 2022, 52(6): 1466-1476.
Guo Qiang, Cui Yu-qiang, Wang Yong. Dynamic cluster-based node scheduling algorithm in wireless sensor networks[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1466-1476.
5 Lu M, Yi J, Wan X, et al. Target tracking in time-division-multifrequency-based passive radar[J]. IEEE Sensors Journal, 2020, 6(9): 4382-4394.
6 陈丹, 姚伯羽. 运动模型引导的自适应核相关目标跟踪方法[J]. 电子学报, 2021, 49(3): 550-558.
Chen Dan, Yao Bo-yu. Adaptive response kernel correlation target tracking method guided by motion model[J]. Acta Electronica Sinica, 2021, 49(3): 550-558.
7 Taguchi S, Kidono K. Exclusive association sampling to improve bayesian multi-target tracking[J]. IEEE Access, 2020, 8(25): 193116-193127.
8 余汉蓉, 林彬, 俞增林. 结合SAMF和视觉显著性的目标跟踪算法[J]. 电光与控制, 2021, 28(1): 15-18, 32.
Yu Han-rong, Lin Bin, Yu Zeng-lin. An object tracking algorithm combining SAMF with visual saliency[J]. Electronics Optics & Control, 2021, 28(1): 15-18, 32.
9 尹莉莙, 蒋峥, 刘斌. 一种检测区域动态更新的目标跟踪算法[J]. 计算机仿真, 2021, 38(8): 333-338, 429.
Yin Li-jun, Jiang Zheng, Liu Bin. A target tracking algorithm for dynamic update of detecting regions[J]. Computer Simulation, 2021, 38(8): 333-338, 429.
10 Luo J, Wang Z, Chen Y, et al. An improved unscented particle filter approach for multi-sensor fusion target tracking[J]. Sensors, 2020, 20(23): 20236842.
11 张楠, 霍羽. 煤矿环境下人员移动无线传感器节点协同定位算法[J]. 吉林大学学报: 工学版, 2022, 52(5): 1168-1173.
Zhang Nan, Huo Yu. Cooperative location algorithm of wireless sensor nodes for personnel movement in coal mine environment[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(5): 1168-1173.
12 张红颖, 贺鹏艺, 王汇三. 基于改进SiamFC的实时目标跟踪算法[J]. 激光与光电子学进展, 2021, 58(6): 308-316.
Zhang Hong-ying, He Peng-yi, Wang Hui-san. A real-time target-tracking algorithm based on improved siamFC[J]. Laser & Optoelectronics Progress, 2021, 58(6): 308-316.
13 Li S, Feng X, Deng Z, et al. Minimum error entropy based multiple model estimation for multisensor hybrid uncertain target tracking systems[J]. IET Signal Processing, 2020, 14(3): 1049-1053.
14 刘云, 钱美伊, 李辉, 等. 特征融合与训练加速的高效目标跟踪[J]. 计算机工程与应用, 2021, 57(10): 101-109.
Liu Yun, Qian Mei-yi, Li Hui, et al. Efficient object tracking with feature fusion and training acceleration[J]. Computer Engineering and Applications, 2021, 57(10): 101-109.
15 符磊, 顾文彬, 艾勇保, 等. 基于双孪生网络的可见光热红外目标实时鲁棒跟踪[J]. 吉林大学学报: 工学版, 2022, 52(12): 2906-2915.
Fu Lei, Gu Wen-bin, Ai Yong-bao, et al. Real-time robust tracking of visible light thermal infrared targets based on twin networks[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2906-2915.
16 Sxa B, Xg A, Qlh A, et al. Distributed guaranteed two-target tracking over heterogeneous sensor networks under bounded noises and adversarial attacks[J]. Information Sciences, 2020, 535(23): 187-203.
17 慕巍, 张宝宜, 王新明, 等. 适用于光电跟踪仪的高速目标跟踪控制算法[J]. 激光与红外, 2020, 50(4): 468-474.
Mu Wei, Zhang Bao-yi, Wang Xin-ming, et al. High speed target tracking control algorithm for electro-optical tracker[J]. Laser & Infrared, 2020, 50(4): 468-474.
18 Anvaripour M, Saif M, Ahmadi M. A novel approach to reliable sensor selection and target tracking in sensor networks[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1): 171-182.
19 罗元, 肖航, 欧俊雄. 基于深度学习的目标跟踪技术的研究综述[J]. 半导体光电, 2020, 41(6): 757-767.
Luo Yuan, Xiao Hang, Jun-xiong Ou. Research on target tracking technology based on deep learning[J]. Semiconductor Optoelectronics, 2020, 41(6): 757-767.
20 陈富健, 谢维信. 引入抗遮挡机制的SiamVGG网络目标跟踪算法[J]. 信号处理, 2020, 36(4): 562-571.
Chen Fu-jian, Xie Wei-xin. SiamVGG network target tracking algorithm with anti-occlusion mechanism [J]. Journal of Signal Processing, 2020, 36(4): 562-571.
21 Li Z, Liao C, Yang Y, et al. High sensitivity gas pressure sensor based on multimode interferometer using hollow-core tube lattice fiber[J]. Optics Letters, 2020, 45(16): 4571-4574.
22 李松, 程咏梅, 王会宾, 等. 时间偏差校准分布式多传感器多目标跟踪算法[J].西北工业大学学报,2020, 38(4): 797-805.
Li Song, Cheng Yong-mei, Wang Hui-bin, et al. Distributed multisensor multitarget tracking algorithm with time-offset registration[J]. Journal of Northwestern Polytechnical University, 2020, 38(4): 797-805.
[1] 王军,徐彦惠,李莉. 低能耗支持完整性验证的数据融合隐私保护方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1657-1665.
[2] 国强,崔玉强,王勇. 无线传感器网络中基于动态簇的节点调度算法[J]. 吉林大学学报(工学版), 2022, 52(6): 1466-1476.
[3] 于斌斌,胡亮,迟令. 可抵抗内外部攻击的无线传感器网络数字签名方案[J]. 吉林大学学报(工学版), 2019, 49(5): 1676-1681.
[4] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[5] 刘洲洲, 彭寒. 基于节点可靠度的无线传感器网络拓扑控制算法[J]. 吉林大学学报(工学版), 2018, 48(2): 571-577.
[6] 于斌斌, 武欣雨, 初剑峰, 胡亮. 基于群密钥协商的无线传感器网络签名协议[J]. 吉林大学学报(工学版), 2017, 47(3): 924-929.
[7] 董颖, 周占颖, 苏真真, 徐洋, 钱志鸿. 基于路由信息的无线传感器网络跨层MAC协议[J]. 吉林大学学报(工学版), 2017, 47(2): 647-654.
[8] 朱海洋, 张合, 马少杰. 增强型超声波周向旋转扫描节点参数优化[J]. 吉林大学学报(工学版), 2017, 47(1): 262-267.
[9] 刘洲洲, 王福豹. 改进的离散混合蛙跳算法压缩感知信号重构及应用[J]. 吉林大学学报(工学版), 2016, 46(4): 1261-1268.
[10] 张婧, 刘衍珩, 张晋东, 孙庚. 无线传感器网络簇半径自适应调整策略[J]. 吉林大学学报(工学版), 2016, 46(3): 876-883.
[11] 滕志军, 张帆, 宋明辉. 无线传感器网络能量均衡蚁群路由算法[J]. 吉林大学学报(工学版), 2016, 46(1): 327-332.
[12] 宋晓莹, 温涛, 郭权, 张冬青, 盛刚. 具有最优簇规模的传感网不等簇数据收集协议[J]. 吉林大学学报(工学版), 2015, 45(6): 1961-1973.
[13] 刘逵, 刘三阳. 基于混合基站策略的传感器网络移动数据收集算法[J]. 吉林大学学报(工学版), 2015, 45(5): 1680-1687.
[14] 匡哲君, 师唯佳, 胡亮, 周航. 基于移动汇聚节点延迟容忍的节能策略[J]. 吉林大学学报(工学版), 2015, 45(5): 1586-1591.
[15] 冯晓宁, 王卓, 张旭. 基于L-π演算的WSN路由协议形式化方法[J]. 吉林大学学报(工学版), 2015, 45(5): 1565-1571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!