吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (6): 1466-1476.doi: 10.13229/j.cnki.jdxbgxb20210021

• 通信与控制工程 • 上一篇    

无线传感器网络中基于动态簇的节点调度算法

国强(),崔玉强,王勇   

  1. 哈尔滨工程大学 信息与通信工程学院,哈尔滨 150001
  • 收稿日期:2021-01-11 出版日期:2022-06-01 发布日期:2022-06-02
  • 作者简介:国强(1972-),男,教授,博士. 研究方向:通信及雷达对抗领域的理论与技术实现.E-mail:guoqiang@hrbeu.edu.cn
  • 基金资助:
    国家重点研发计划战略性国际科技创新合作重点专项项目(2018YFE0206500);国家自然科学基金面上项目(62071140)

Nodes scheduling algorithm based on dynamic cluster in wireless sensor network

Qiang GUO(),Yu-qiang CUI,Yong WANG   

  1. College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China
  • Received:2021-01-11 Online:2022-06-01 Published:2022-06-02

摘要:

在基于无线传感器网络(WSN)的目标跟踪系统中,为了合理地制定节点之间的协作方式,在保证目标跟踪精度的同时减少节点的激活时间、平衡节点的能量消耗、延长网络的生存期,提出了一种根据节点剩余能量和PCRLB信息组建动态簇的节点调度算法。首先,利用粒子滤波的方法预测目标在下一时刻的位置,根据预测位置和预测协方差矩阵确定目标在下一时刻的椭圆区域,从而确定下一时刻的候选节点区域。然后,在候选节点区域,根据节点的剩余能量和PCRLB信息选择部分传感器节点组成动态簇对目标进行跟踪。仿真结果表明,本文算法不仅能够降低跟踪误差,而且可以平衡节点的能量消耗,延长网络的生存期。

关键词: 通信技术, 无线传感器网络, 目标跟踪, 节点调度, 能量消耗, 后验克拉美罗下界

Abstract:

To make a reasonable cooperation mode between nodes, reduce the activation time of nodes, balance the energy consumption between nodes and prolong the network lifetime while ensuring the target tracking accuracy, a nodes scheduling algorithm is formed based on the residual energy and PCRLB information of nodes in the target tracking system of wireless sensor network. First, the proposed algorithm uses particle filter to predict the position of the target at the next time. Based on the predicted position and the prediction covariance matrix, the ellipse area of the target at the next time is determined, and then the candidate nodes region at the next time is determined. Then,in the candidate nodes region, based on the information of PCRLB and the residual energy of nodes, several sensor nodes are selected to form a cluster to track the target. Simulation results show that the proposed algorithm can not only reduce the tracking error, but also balance the energy consumption of nodes and prolong the network lifetime.

Key words: communication technology, wireless sensor network(WSN), target tracking, nodes scheduling, residual energy, posterior Carmér-rao lower bound

中图分类号: 

  • TN915

图1

无线电能量模型"

图2

动态簇中的节点感知不到目标的情况"

图3

误差椭圆"

图4

候选节点区域"

图5

节点动态分簇仿真结果图"

图6

能量消耗对比"

图7

消亡节点数对比"

图8

跟踪误差比较"

表1

不同节点数时不同算法性能比较"

节点数算法首个节点消亡时间生存期跟踪误差
500EWPCRLB5245420.5644
AASA4414800.5989
PBCA4344680.5965
600EWPCRLB5355600.5603
AASA4715110.5889
PBCA4645060.5856
700EWPCRLB5635770.5516
AASA4925290.5802
PBCA4765140.5749
800EWPCRLB6186200.5503
AASA5155640.5778
PBCA5055640.5716
1 Hussain M A, Khan P, Kwak K S. WSN research activities for military application[C]∥Proceedings of the 11th international conference on Advanced Communication Technology,South Korea,2009: 271-274.
2 Rahman G, Wahid K A. LDAP: lightweight dynamic auto-reconfigurable protocol in an IoT-Enabled WSN for wide-area remote monitoring[J]. Remote Sensing, 2020, 12(19): No. 3131.
3 Saleh N, Kassem A, Haidar A M. Energy-efficient architecture for wireless sensor networks in healthcare applications[J]. IEEE Access, 2018, 6: 6478-6486.
4 Mendoza E, Fuentes P, Benitez I, et al. Network of multi-hop wireless sensors for low cost and extended area home automation systems[J]. Revista Iberoamericana De Automatica E Informatica Industrial, 2020, 17(4): 412-423.
5 Hu X Y, Yang L Q, Xiong W. A novel wireless sensor network frame for urban transportation[J]. IEEE Internet of Things Journal, 2015, 2(6): 586-595.
6 Zheng J, Bhuiyan M Z A, Liang S, et al. Auction-based adaptive sensor activation algorithm for target tracking in wireless sensor networks[J]. Future Generation Computer Systems, 2014, 39: 88-99.
7 Darabkh K A, Albtoush W Y, Jafar I F. Improved clustering algorithms for target tracking in wireless sensor networks[J]. The Journal of Supercomputing, 2016, 73(5): 1-26.
8 Zhang S, Chen H, Liu M. Adaptive sensor scheduling for target tracking in underwater wireless sensor networks[C]∥2014 International Conference on Mechatronics and Control (ICMC), Jinzhou, China, 2014: 55-60.
9 Luo J H, Han Y. A node depth adjustment method with computation-efficiency based on performance bound for range-only target tracking in UWSNs[J]. Signal Processing, 2018, 158: 79-90.
10 Alaybeyoglu A, Kantarci A, Erciyes K. A dynamic distributed tree-based tracking algorithm for wireless sensor networks[C]∥International Conference on Wireless and Mobile Networks,Ankara, Turkey,2010:295-303.
11 Wang X B, Fu M Y, Zhang H S. Target tracking in wireless sensor networks based on the combination of KF and MLE using distance measurements[J]. IEEE Transactions on Mobile Computing, 2012, 11(4): 567-576.
12 Wang Y, Jie H, Cheng L. A fusion localization method based on a robust extended kalman filter and track-quality for wireless sensor networks[J]. Sensors (Basel, Switzerland), 2019, 19(17): No.3638.
13 Zhang Y, Gao L J. Sensor-networked underwater target tracking based on grubbs criterion and improved particle filter algorithm[J]. IEEE Access, 2019, 7: 142894-142906.
14 Ren Q, Gao H, Jiang S, et al. An Energy-efficient Object Tracking Algorithm in Sensor Networks[M]. Berlin:Springer Berlin Heidelberg, 2008.
15 Sha C, Zhong L H, Bian Y, et al. A type of energy-efficient target tracking approach based on grids in sensor networks[J]. Peer-to-Peer Networking and Applications, 2019, 12(5): 1041-1060.
16 Ahmad T, Abbas A M. EEAC: An energy efficient adaptive cluster based target tracking in wireless sensor networks[J]. Journal of Interdisciplinary Mathematics, 2020, 23(2): 379-392.
17 Toumi M, Maizate A, Ouzzif M. Dynamic cluster algorithm for improving percolation of targets in a sensor network[J]. Egyptian Informatics Journal, 2019, 20(3): 179-191.
18 Wang G J, Bhuiyan M Z A, Zhang L. Two-level cooperative and energy-efficient tracking algorithm in wireless sensor networks[J]. Concurrency and Computation: Practice and Experience, 2010, 22(4): 518-537.
19 Aydogmus O, Talu M F. Comparison of extended-kalman and particle-filter-based sensorless speed control[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(2): 402-410.
20 Heinzelman W R, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol for wireless microsensor networks[C]∥Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, HI, USA, 2000: 1567-1576.
21 Deldar F, Yaghmaee M H. Designing a prediction-based clustering algorithm for target tracking in wireless sensor networks[C]∥2011 International Symposium on Computer Networks and Distributed Systems (CNDS) Tehran, Iran, 2011: 199-203.
22 周非, 安康宁, 范馨月, 等. 无线传感网络中基于误差椭圆的自适应节点选择目标跟踪算法[J]. 传感技术学报, 2017, 30(10): 1548-1553.
Zhou Fei, An Kang-ning, Fan Xin-Yue, et al. Target tracking in wireless sensor network based on error ellipse and adaptive selection of nodes[J]. Chinese Journal of Sensors and Actuators, 2017, 30(10): 1548-1553.
23 Keshavarz-Mohammadiyan A, Khaloozadeh H. Interacting multiple model and sensor selection algorithms for manoeuvring target tracking in wireless sensor networks with multiplicative noise[J]. International Journal of Systems Science, 2017, 48(5): 899-908.
[1] 李建坡,李美霖,杨涛,薛鹏. 大规模MIMO⁃OFDM系统中低复杂度维纳滤波信道估计算法[J]. 吉林大学学报(工学版), 2022, 52(1): 211-218.
[2] 孙大洋,王雪莹,韩双雪,钟辉,戴江南. 虚拟锚点高维坐标的非视距识别及定位优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2207-2215.
[3] 李建坡,薛鹏,杨涛,李美霖. 基于分组导频复用的大规模多输入多输出系统导频污染抑制方法[J]. 吉林大学学报(工学版), 2021, 51(6): 2225-2236.
[4] 徐涛,马克,刘才华. 基于深度学习的行人多目标跟踪方法[J]. 吉林大学学报(工学版), 2021, 51(1): 27-38.
[5] 马彦,黄健飞,赵海艳. 基于车间通信的车辆编队控制方法设计[J]. 吉林大学学报(工学版), 2020, 50(2): 711-718.
[6] 刘毅,肖玲玲,王改静,张武军. 基于联合优化的D2D资源分配算法[J]. 吉林大学学报(工学版), 2020, 50(1): 306-314.
[7] 李翠然,于永生,谢健骊. 基于次用户优先级的频谱共享动态博弈算法[J]. 吉林大学学报(工学版), 2020, 50(1): 315-323.
[8] 王金鹏,叶政鹏,曹帆,邹念育. 5G移动通信中基于同频干扰分布的协同分布式天线传输系统[J]. 吉林大学学报(工学版), 2020, 50(1): 333-341.
[9] 李文军,华强,谭立东,孙悦. DV⁃HOP和接收信号强度指示结合的改进算法[J]. 吉林大学学报(工学版), 2019, 49(5): 1689-1695.
[10] 于斌斌,胡亮,迟令. 可抵抗内外部攻击的无线传感器网络数字签名方案[J]. 吉林大学学报(工学版), 2019, 49(5): 1676-1681.
[11] 王鹏宇,赵世杰,马天飞,熊晓勇,程馨. 基于联合概率数据关联的车用多传感器目标跟踪融合算法[J]. 吉林大学学报(工学版), 2019, 49(5): 1420-1427.
[12] 王洪雁,房云飞,朱圣棋,裴炳南. 非均匀噪声条件下考虑互耦效应的DOA估计方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1706-1714.
[13] 王宏志,姜方达,周明月. 基于遗传粒子群优化算法的认知无线电系统功率分配[J]. 吉林大学学报(工学版), 2019, 49(4): 1363-1368.
[14] 刘勇,邓方顺,刘小林,闵思婕,王鹏. 基于双混沌振子的最小频移键控信号频率估计方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1357-1362.
[15] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!