吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (1): 155-161.doi: 10.13229/j.cnki.jdxbgxb.20221272

• 交通运输工程·土木工程 • 上一篇    

基于多源数据融合的高速公路路网短时交通流参数实时预测

高海龙1(),徐一博1,刘坤2,李春阳1,卢晓煜1   

  1. 1.交通运输部公路科学研究院 安全中心,北京 100088
    2.港珠澳大桥管理局,广东 珠海 519060
  • 收稿日期:2022-10-12 出版日期:2024-01-30 发布日期:2024-03-28
  • 作者简介:高海龙(1965-),男,研究员,博士.研究方向:交通安全与智能交通.E-mail:ghl19650815@163.com
  • 基金资助:
    国家重点研发计划项目(2019YFB1600703)

High-speed highway road network short-term traffic flow parameters based on multi-source data fusion prediction

Hai-long GAO1(),Yi-bo XU1,Kun LIU2,Chun-yang LI1,Xiao-yu LU1   

  1. 1.Safety Center,Research Institute of Highway Ministry of Transport,Beijing 100088,China
    2.Hong Kong -Zhuhai -Macao Bridge Authority,Zhuhai 519060,China
  • Received:2022-10-12 Online:2024-01-30 Published:2024-03-28

摘要:

针对高速公路路网交通数据中存在大量噪声数据与缺失数据,数据完整度较低,导致预测精度下降的问题,提出一种基于多源数据融合的高速公路路网短时交通流参数实时预测方法。采用小波分析阈值法对高速公路路网交通数据进行去噪处理,在最小二乘支持向量机基础上采用组合阈值填补方法填补交通数据序列中存在的缺失数据,提高交通数据的完整度。结合小波神经网络和遗传算法建立短时交通流参数预测模型,采用遗传-小波神经网络处理多源检测器采集到的交通流参数,通过最小二乘动态加权融合算法融合多个检测器的交通流参数,将交通流参数输入预测模型中,得到高速公路路网短时交通流参数实时预测结果。实验结果表明,采用本文方法处理后的交通数据序列中不存在缺失数据,数据完整度较高,且所得预测结果与实际车流量变化曲线较为贴近,预测精度高,可以广泛应用在交通流预测领域。

关键词: 多源数据融合, 高速公路路网, 短时交通流, 参数预测, 小波分析阈值法, 最小二乘支持向量机, 遗传?小波神经网络

Abstract:

There are a lot of noise data and missing data in the traffic data of expressway network, and the data integrity is not high, leading to the decline of prediction accuracy. A real-time prediction method for short-term traffic flow parameters of expressway network based on multi-source data fusion is proposed. The wavelet analysis threshold method is used to denoise the traffic data of the expressway network. Based on the least squares support vector machine, the combined threshold filling method is used to fill in the missing data in the traffic data sequence to improve the integrity of the traffic data. The short-term traffic flow parameter prediction model is established by combining wavelet neural network and genetic algorithm. The traffic flow parameters collected by multi-source detectors are processed by genetic wavelet neural network. The traffic flow parameters of multiple detectors are fused by the least squares dynamic weighted fusion algorithm. The traffic flow parameters are input into the prediction model to obtain the real-time prediction results of short-term traffic flow parameters of expressway network. The experimental results show that there is no missing data in the traffic data series processed by the proposed method, the data integrity is high, and the predicted results are close to the actual vehicle flow change curve, with high prediction accuracy, which can be widely used in the field of traffic flow prediction.

Key words: multi-source data fusion, expressway network, short term traffic flow, parameter prediction, wavelet analysis threshold method, least squares support vector machine, genetic wavelet neural network

中图分类号: 

  • U491.1

图1

高速公路路网短时交通流参数实时预测流程图"

表1

实验环境参数"

实验环境配置参数
硬件环境CPUIntel(R) Core(TM) i5-9400
频率2.90 GHz
RAM16.0 GB
软件环境操作系统Windows 10
版本18362.1082专业版
位数64 bit
模拟软件语言APDL
仿真软件Matlab 7.0

表2

实验数据 (GB)"

数据类型数据量
基础空间数据7.06
城市及周边基础地理信息5.69
道路交通网络基础信息7.86
道路交通客运信息10.50
停车场信息11.20
交通管理信息5.96
遥感信息6.87
智慧交通系统信息8.78
车联网信息5.66

图2

高速公路路网"

图3

缺失的交通数据序列"

图4

不同方法的数据处理结果"

图5

不同方法的交通流参数预测结果"

1 薛晗, 邵哲平, 潘家财, 等. 基于文化萤火虫算法-广义回归神经网络的船舶交通流量预测[J]. 上海交通大学学报, 2020, 54(4): 421-429.
Xue Yi, Shao Zhe-ping, Pan Jia-cai, et al. Vessel traffic flow prediction based on CFA-GRNN algorithm[J]. Journal of Shanghai Jiaotong University, 2020, 54 (4): 421-429.
2 林艳, 闫帅, 张一晋, 等. 基于交通流量预测的车联网双边拍卖边缘计算迁移方案[J]. 通信学报, 2020,41(12): 205-214.
Lin Yan, Yan Shuai, Zhang Yi-jin, et al. Flow-of-traffic prediction program based mobile edge computing for Internet of vehicles using double auction[J]. Journal on Communications, 2020, 41(12): 205-214.
3 刘小明, 田玉林, 唐少虎, 等. 基于时延特性建模的多断面短时交通流预测[J]. 交通运输系统工程与信息, 2020, 20(3): 54-60.
Liu Xiao-ming, Tian Yu-lin, Tang Shao-hu, et al. Short-term traffic flow prediction of multi-sections based on time-delay modeling[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(3): 54-60.
4 倪庆剑, 彭文强, 张志政, 等. 基于信息增强传输的时空图神经网络交通流预测[J]. 计算机研究与发展,2022, 59(2): 282-293.
Ni Qing-jian, Peng Wen-qiang, Zhang Zhi-zheng, et al. Spatial-temporal graph neural network for traffic flow prediction based on information enhanced transmission[J]. Journal of Computer Research and Development, 2022, 59(2): 282-293.
5 陈克, 张晓冬, 李宁. 基于CEEMD与自适小波阈值组合降噪在OPAX方法的应用[J]. 振动与冲击,2021, 40(16): 192-198.
Chen Ke, Zhang Xiao-dong, Li Ning. Application of CEEMD and adaptive wavelet threshold combined noise reduction in the OPAX method[J]. Journal of Vibration and Shock, 2021, 40 (16): 192-198.
6 田劼, 宋姗. 改进粒子群优化小波阈值的矿用钢丝绳损伤信号处理方法研究[J]. 煤炭工程, 2020, 52(4):103-107.
Tian Yan, Song Shan. Processing method for mine wire rope damage signal based on improved particle swarm optimization wavelet threshold[J]. Coal Engineering, 2020, 52(4): 103-107.
7 王萍, 张吉昂, 程泽. 基于最小二乘支持向量机误差补偿模型的锂离子电池健康状态估计方法[J]. 电网技术, 2022, 46(2): 613-623.
Wang Ping, Zhang Jiang, Cheng Ze. State of health estimation of li-ion battery based on least squares support vector machine error compensation model[J]. Power System Technology, 2022, 46(2): 613-623.
8 舒星, 刘永刚, 申江卫, 等. 基于改进最小二乘支持向量机与Box-Cox变换的锂离子电池容量预测[J].机械工程学报, 2021, 57(14): 118-128.
Shu Xing, Liu Yong-gang, Shen Jiang-wei, et al. Capacity prediction for lithium-ion batteries based on improved least squares support vector machine and Box-Cox transformation[J]. Journal of Mechanical Engineering, 2021, 57 (14): 118-128.
9 李兵, 崔介兵, 何怡刚, 等. 基于能量谱熵及小波神经网络的有源中性点钳位三电平逆变器故障诊断[J].电工技术学报, 2020, 35(10): 2216-2225.
Li Bing, Cui Jie-bing, He Yi-gang, et al.. Fault diagnosis of active neutral point clamped three-level inverter based on energy spectrum entropy and wavelet neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2216-2225.
10 韩锟,李斯宇.基于遗传小波神经网络的停车泊位预测方法[J].铁道科学与工程学报,2020,17(9): 2216-2224.
Han Yan, Li Si-yu. Parking space prediction method based on genetic wavelet neural network[J]. Journal of Railway Science and Engineering, 2020,17(9): 2216-2224.
11 梁仲明, 滕宪斌, 杨期江, 等. 基于CEEMD-参数优化Morlet小波变换的柴油机振动信号冲击特征提取方法[J]. 船舶工程, 2020, 42(5): 90-96.
Liang Zhong-ming, Teng Xian-bin, Yang Qi-jiang, et al. Diesel engine vibration signal impact feature extraction method based on CEEMD-parameter optimized morlet wavelet transform[J]. Ship Engineering, 2020, 42(5): 90-96.
12 郭昌放, 杨真, 武祥, 等. 基于Morlet小波的时频分析方法在地震槽波精准反演煤厚中的应用[J]. 中国煤炭, 2021, 47(5): 46-52.
Guo Chang-fang, Yang Zhen, Wu Xiang, et al. Application of time-frequency analysis method based on Morlet wavelet in accurate inversion of coal seam thickness by seismic channel wave[J]. China Coal, 2021, 47(5): 46-52.
13 李博文,谢在鹏,毛莺池,等. 一种基于分布式编码的同步梯度下降算法[J]. 计算机工程, 2021, 47(4):68-76, 83.
Li Bo-wen, Xie Zai-peng, Mao Ying-chi, et al. A synchronized gradient descent algorithm based on distributed coding[J]. Computer Engineering, 2021,47(4): 68-76, 83.
14 宋杰, 朱勇, 许冰. 批量减数更新方差缩减梯度下降算法BSUG[J].计算机工程与应用,2020,56(22):117-123.
Song Jie, Zhu Yong, Xu Bing. Batch subtraction update variance reduction gradient descent algorithm BSUG[J]. Computer Engineering and Applications, 2020, 56 (22): 117-123.
15 潘龙帅, 高建平, 宋哲, 等. 多源信息融合的车速预测方法及整车能量管理[J]. 河南科技大学学报:自然科学版, 2020, 41(6): 23-31, 4,5.
Pan Long-shuai, Gao Jian-ping, Song Zhe, et al. Vehicle speed prediction method based on multi-source information fusion and vehicle energy management[J]. Journal of Henan University of Science & Technology (Natural Science), 2020, 41(6): 23-31, 4,5.
[1] 谷远利, 张源, 芮小平, 陆文琦, 李萌, 王硕. 基于免疫算法优化LSSVM的短时交通流预测[J]. 吉林大学学报(工学版), 2019, 49(6): 1852-1857.
[2] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[3] 商强, 杨兆升, 张伟, 邴其春, 周熙阳. 基于奇异谱分析和CKF-LSSVM的短时交通流量预测[J]. 吉林大学学报(工学版), 2016, 46(6): 1792-1798.
[4] 卢英, 王慧琴, 秦立科. 高大空间建筑火灾精确定位方法[J]. 吉林大学学报(工学版), 2016, 46(6): 2067-2073.
[5] 张静, 刘向东. 混沌粒子群算法优化最小二乘支持向量机的混凝土强度预测[J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
[6] 徐淼,赵丁选,倪涛,徐春博. 基于最小二乘支持向量机的混合动力挖掘机负载功率预测[J]. 吉林大学学报(工学版), 2015, 45(1): 133-138.
[7] 李阳, 史东承, 王珂, 王燕, 魏艳芳. 基于图像模式的肺结节识别[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 463-467.
[8] 冯金巧, 杨兆升, 孙占全, 张立东, 刘威. 基于小波分析的交通参数组合预测方法[J]. 吉林大学学报(工学版), 2010, 40(05): 1220-1224.
[9] 孙斌,刘天栋,周云龙. 小波包主成分分析在气液两相流流型识别中的应用[J]. 吉林大学学报(工学版), 2009, 39(06): 1532-1537.
[10] 姚智胜,邵春福,熊志华,岳昊 . 基于主成分分析和支持向量机的道路网短时交通流量预测 [J]. 吉林大学学报(工学版), 2008, 38(01): 48-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!