吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 1771-1778.doi: 10.13229/j.cnki.jdxbgxb201606006
孙璐1,2, 徐建1,3, 崔相民4
SUN Lu1,2, XU Jian1,3, CUI Xiang-min4
摘要: 构建了一种基于面板数据的空间非集计模型——负二项面板模型,包括混合效应、固定效应和随机效应3种类型,以同性质路段为研究单元,选取道路线形、交通特性、土地利用和降雨量等影响因素,利用事故率比例指标IRR,分析和预测未受伤事故、受伤事故、死亡事故和事故总数等4种类型事故,并通过F检验和Hausman检验以及对数似然值和离差信息准则DIC,对比分析3种类型模型的拟合效果。发现协变量对各类型交通事故的影响作用和统计显著性不尽相同,如限速每增加1.609 km/h(1 mile/h),未受伤事故、受伤事故、事故总数分别减少3.89%、2.24%和2.79%,而死亡事故增加6.38%。研究结果表明:负二项面板固定效应模型比混合模型和随机效应模型更优,另外越严重的事故,模型拟合效果越好。
中图分类号:
[1] 马壮林,邵春福,李霞. 基于Logistic模型的公路隧道交通事故严重程度的影响因素[J]. 吉林大学学报: 工学版,2010,40(2):423-426. Ma Zhuang-lin, Shao Chun-fu, Li Xia. Analysis of factors affecting accident severity in highway tunnels based on logistic model[J]. Journal of Jilin University(Engineering and Technology Edition),2010,40(2):423-426. [2] 李铁洪, 吴华金. 长直线接小半径曲线公路交通事故成因及预防对策[J]. 中国公路学报,2007,20(1):35-40. Li Tie-hong, Wu Hua-jin. Causes and countermeasures of highway traffic accidents in long straight line combined with sharp curve[J]. China Journal of Highway and Transport,2007,20(1):35-40. [3] 黄合来,邓雪,许鹏鹏. 考虑空间自相关的贝叶斯事故预测模型[J]. 同济大学学报:自然科学版,2013,41(9):1378-1383. Huang He-lai,Deng Xue, Xu Peng-peng. Bayesian crash prediction model based on a consideration of spatial autocorrelation[J]. Journal of Tongji University (Natural Science),2013,41(9):1378-1383. [4] Jones A P,Haynes R,Kennedy V, et al. Geographical variations in mortality and morbidity from road traffic accidents in England and Wales[J]. Health & Place,2008,14(3):519-535. [5] Noland R B,Quddus M A. A spatially disaggregate analysis of road casualties in England[J]. Accident Analysis & Prevention,2004,36(6):973-984. [6] Wang Y,Kockelman K M. A conditional-autoregressive count model for pedestrian crashes across neighborhoods[R]. The 92nd Annual Meeting of the Transportation Research Board, 2013. [7] Ma J M,Kockelman K M,Boothe C. Bayesian multivariate Poisson regression for models of injury count, by severity[J]. Transportation Research Record,2006,1950(1):24-34. [8] Abdel-Aty M, Radwan A E. Modeling traffic accident occurrence and involvement[J]. Accident Analysis & Prevention,2000,32(5):633-642. [9] Wang C, Quddus M A, Ison S G. Predicting accident frequency at their severity levels and its application in site ranking using a two-stage mixed multivariate model[J]. Accident Analysis & Prevention,2011,43(6):1979-1990. [10] Ma J M,Kockelman K M,Damien P. A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods[J]. Accident Analysis & Prevention,2008,40(3):964-975. [11] Lord D. The prediction of accidents on digital networks: characteristics and issues related to the application of accident prediction models[D]. Toronto: University of Toronto,2000. [12] Park B J,Lord D. Application of finite mixture models for vehicle crash data analysis[J]. Accident Analysis & Prevention,2009,41(4):683-691. [13] Lambert D. Zero-inflated Poisson regression with an application to defects in manufacturing[J]. Technometrics,1992,34(1):1-14. [14] Qin X,Reyes P. Conditional quantile analysis for crash count data[J]. Journal of Transportation Engineering,2011,137(9):601-607. [15] 王军雷,孙小端,贺玉龙,等. 交通事故宏观计量经济学模型[J]. 交通运输工程学报,2012,12(2):70-75. Wang Jun-lei, Sun Xiao-duan, He Yu-long, et al. Macroscopic econometrics model of traffic accident[J]. Journal of Traffic and Transportation Engineering,2012,12(2):70-75. [16] 徐婷, 孙小端, 王伟力,等. 基于Panel Data的高速公路事故预测模型[J]. 北京工业大学学报,2010,36(4):495-499. Xu Ting,Sun Xiao-duan,Wang wei-li, et al. Highway accidents statistical analysis with panel data model[J]. Journal of Beijing University of Technology,2010,36(4):495-499. [17] Kweon Y J,Kockelman K M. Spatially disaggregate panel models of crash and injury counts: the effect of speed limits and design[R]. Transportation Research Board 83rd Annual Meeting,2004. [18] Openshaw S. The modifiable areal unit problem[J]. Concepts and Techniques in Modern Geography, 1984. [19] Hausman J,Hall B,Griliches Z. Econometric models for count data with an application to the patents-R&D relationship[J]. Econometrica,1984,52(4):909-938. [20] Oh J, Lyon C, Washington S P, et al. Validation of the FHWA crash models for rural intersections: lessons learned[J]. Transportation Research Record,2003,1840:41-49. |
[1] | 代存杰,李引珍,马昌喜,柴获,牟海波. 不确定条件下危险品配送路线多准则优化[J]. 吉林大学学报(工学版), 2018, 48(6): 1694-1702. |
[2] | 王芳荣, 郭柏苍, 金立生, 高琳琳, 岳欣羽. 次任务驾驶安全评价指标筛选及其权值计算[J]. 吉林大学学报(工学版), 2017, 47(6): 1710-1715. |
[3] | 谭立东, 刘丹, 李文军. 基于蝇复眼的交通事故现场全景图像阵列仿生设计[J]. 吉林大学学报(工学版), 2017, 47(6): 1738-1744. |
[4] | 李显生, 孟祥雨, 郑雪莲, 程竹青, 任圆圆. 非满载罐体内液体冲击动力学特性[J]. 吉林大学学报(工学版), 2017, 47(3): 737-743. |
[5] | 王占中, 赵利英, 曹宁博. 基于多层编码遗传算法的危险品运输调度模型[J]. 吉林大学学报(工学版), 2017, 47(3): 751-755. |
[6] | 徐进, 陈薇, 周佳, 罗骁, 邵毅明. 汽车转向盘操作与驾驶负荷的相关性[J]. 吉林大学学报(工学版), 2017, 47(2): 438-445. |
[7] | 郭应时, 付锐, 赵凯, 马勇, 袁伟. 驾驶人换道意图实时识别模型评价及测试[J]. 吉林大学学报(工学版), 2016, 46(6): 1836-1844. |
[8] | 王喆, 杨柏婷, 刘昕, 刘群, 宋现敏. 基于模糊聚类的驾驶决策判别[J]. 吉林大学学报(工学版), 2015, 45(5): 1414-1419. |
[9] | 马勇, 石涌泉, 付锐, 郭应时. 驾驶人分心时长对车道偏离影响的实车试验[J]. 吉林大学学报(工学版), 2015, 45(4): 1095-1101. |
[10] | 徐建, 孙璐. 解决交通事故数据分析中零值问题的模型[J]. 吉林大学学报(工学版), 2015, 45(3): 769-775. |
[11] | 金立生, 王岩, 刘景华, 王亚丽, 郑义. 基于Adaboost算法的日间前方车辆检测[J]. 吉林大学学报(工学版), 2014, 44(6): 1604-1608. |
[12] | 金立生,牛清宁,刘景华,秦彦光,吕欢欢. 不同道路线形下驾驶人认知分散状态监测[J]. 吉林大学学报(工学版), 2014, 44(3): 642-647. |
[13] | 詹伟, 吕庆, 尚岳全. 高速公路隧道群交通事故灰色马尔可夫预测[J]. 吉林大学学报(工学版), 2014, 44(01): 62-67. |
[14] | 李志斌, 刘攀, 金茂菁, 徐铖铖. 高速公路常发拥堵路段追尾事故风险实时预测[J]. 吉林大学学报(工学版), 2013, 43(06): 1482-1487. |
[15] | 郑雪莲, 李显生, 任园园, 王宇宁, 杨猛. 非满载汽车罐车液体冲击等效机械模型[J]. 吉林大学学报(工学版), 2013, 43(06): 1488-1493. |
|