吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (3): 711-718.doi: 10.13229/j.cnki.jdxbgxb.20220551

• 交通运输工程·土木工程 • 上一篇    

城市群轨道交通直通线路优化设置方法

吴文静(),熊康贝,贾洪飞(),罗清玉   

  1. 吉林大学 交通学院,长春 130022
  • 收稿日期:2022-05-09 出版日期:2024-03-01 发布日期:2024-04-18
  • 通讯作者: 贾洪飞 E-mail:wuwj@jlu.edu.cn;jiahf@jlu.edu.cn
  • 作者简介:吴文静(1980-),女,教授,博士.研究方向:智能网联交通.E-mail:wuwj@jlu.edu.cn
  • 基金资助:
    吉林省教育厅科学研究项目(JJKH20211115KJ)

Optimal setting method of rail transit through lines in urban agglomeration

Wen-jing WU(),Kang-bei XIONG,Hong-fei JIA(),Qing-yu LUO   

  1. College of Transportation,Jilin University,Changchun 130022,China
  • Received:2022-05-09 Online:2024-03-01 Published:2024-04-18
  • Contact: Hong-fei JIA E-mail:wuwj@jlu.edu.cn;jiahf@jlu.edu.cn

摘要:

为满足城市群范围内旅客直达出行需求,提出了以多层次轨道交通衔接为基础的直通线路规划方案,探讨了不同方案带来的客运系统增益效果。基于超网络理论构建了城市群超网络模型,量化了旅客超路径的广义出行费用。构建了直通线路最优选择方案的双层规划模型:上层规划综合考虑运输商的利润和设置直通线路所节约的旅客出行成本;下层规划为城市群多方式交通系统的平衡分配模型,采用遗传算法和相继平均法求解上下层模型。最后,以京津冀城市群内衔接主要枢纽的客运线路为例对模型进行有效性验证,对直通线路设置规模的合理性进行论证。结果表明:在北京首都国际机场、北京站、北京西站、北京南站和天津站这5个枢纽之间,可开通备选直通线路11条,最佳直通线路编号为1、2、5、6、7、9;目前合理的直通线路规模为3条,开通之后的系统效益将提升28.03%,旅客平均出行时间降低10.02%。

关键词: 综合运输, 轨道直通线路, 双层规划模型, 城市群出行, 超网络, 广义出行费用

Abstract:

To meet the demand of direct passenger travel within the scope of urban agglomeration, the through lines plans based on the connection of multi-level rail transit were proposed, and the gain effects of passenger transport system brought by different plans were discussed. The specific contents are as follows: a super network model of urban agglomerations multi-mode transportation was constructed based on the theory of hyper network. The generalized travel cost of passenger super path was quantified. A bi-level programming model for the optimal setting of through lines was constructed, in which the upper level programming considered the profit of the transporter and the saving of the passenger travel cost brought by the setting of through lines. The lower level programming was a balanced allocation model for the multi-mode transportation system of urban agglomeration. Genetic algorithm and successive average method were used to solve the upper and lower level models. Finally, the passenger lines connecting the main hubs in Beijing-Tianjin-Hebei Urban Agglomeration were taken as an example to illustrate the performance and applications of the model, and the rationality of the scale of the through line was demonstrated. The results show that, there are 11 alternatives through lines between Beijing Capital International Airport, Beijing railway station, Beijing West Railway Station, Beijing South Railway Station and Tianjin railway station. The best through lines are No. 1, 2, 5, 6, 7and 9. The reasonable scale of the direct line is 3 at present. After opening, the system benefit will increase by 28.03% and the average travel time of passengers will reduce by 10.02%.

Key words: integrated transportation, through rail line, bi-level programming model, urban agglomeration travel, super network, generalized travel cost

中图分类号: 

  • U491.1

图1

北京北站-北京朝阳站线路示意图"

图2

客运交通超网络结构图"

图3

模型求解流程图"

图4

京津冀城市群超网络结构"

表1

枢纽与节点编号对应表"

编号节点编号节点
1北京首都国际机场7菜市口
2三元桥8北京站
3东直门9北京西站
4双井10北京南站
5十里河11天津站
6宣武门

表2

城市群枢纽间出行客流量 (人/h)"

DO
1891011
111641002901838
8190917161596
927722579
102119
11

表3

模型中各交通方式参数取值"

交通方式vm/(km·h-1hm/minRm/(元·km-1cm/(元·km-1αmβm
机场大巴36151.330.90390.40
地铁5481.010.84450.36
铁路80200.300.22490.33
轨道直通100100.410.32540.30

表4

轨道直通线路备选集"

OD交通方式超路径换乘节点序号
1-8机场线-地铁1-2-3-831
1-9机场线-地铁1-2-4-7-92、42
机场线-铁路1-2-3-8-93、83
1-10机场线-地铁1-2-3-8-6-7-103、64
机场线-地铁1-2-4-5-102、55
8-10地铁-地铁8-6-7-1066
9-10地铁-地铁9-7-1077
1-11机场线-地铁-铁路1-2-3-8-113、88
机场线-地铁-铁路1-2-4-7-9-112、4、99
机场线-地铁-铁路1-2-3-8-6-7-10-113、6、1010
机场线-地铁-铁路1-2-4-5-10-112、5、1011

表5

不同规模下最佳直通线路选择方案"

规模跨线直通方案系统效益/元增量/%旅客平均出行时间/min时间增量/%
0294 60048.90
11333 76013.2948.31-1.21
21,7359 4407.6946.78-3.16
31,5,7377 1904.9444.00-5.94
41,5,6,7383 3501.6343.07-2.11
51,2,5,6,7388 9101.4542.32-1.73
61,2,5,6,7,9389 6100.1841.67-1.28
1 Vigrass J W. Alternative forms of motive power for suburban rail rapid transit[C]∥ASME/IEEE Joint Conference on Railroads, Chicago, IL, USA, 1990: 259-265.
2 Griffin T. Light rail transit sharing the railtrack system[J]. Proceedings of the Institution of Civil Engineers-Transport, 1996, 117(2): 98-103.
3 Current J R, Velle C, Cohon J L. The maximum covering/shortest path problem: a multi-objective network design and routing formulation[J]. European Journal of Operational Research, 1985, 21(2): 189-199.
4 Gendreau M, Laporte G, Mesa J A. Locating rapid transit lines[J]. Journal of Advanced Transportation, 2010, 29(2): 145-162.
5 Derrible S, Kennedy C. Network analysis of world subway systems using updated graph theory[J]. Journal of the Transportation Research Board, 2009, 2112(1): 17-25.
6 马威. 基于规划紧迫度的京津冀城市群城际铁路网规划研究[D]. 石家庄: 石家庄铁道大学交通运输学院, 2020.
Ma Wei. Research on the intercity railway network planning of Beijing Tianjin Hebei urban agglomeration based on the urgency of planning[D]. Shijiazhuang: School of Traffic and Transportation, Shijiazhuang Tiedao University, 2020.
7 周建军, 顾保南. 国外市域轨道交通共线运营方式的发展和启示[J]. 城市轨道交通研究, 2004(6): 75-77.
Zhou Jian-jun, Gu Bao-nan. Development of joint operation in foreign metropolitan rail transit[J]. Urban Mass Transit, 2004(6): 75-77.
8 裴玉龙, 马部珍, 杨世军. 基于广义费用的公共交通与私人交通竞争强度研究[J]. 重庆理工大学学报: 自然科学, 2020, 34(1): 169-175.
Pei Yun-long, Ma Bu-zhen, Yang Shi-jun. Analysis on the competitiveness of public transport and private transportation of urban residents[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(1): 169-175.
9 徐璞. 城市群多方式旅客运输网络能力优化建模及算法研究[D]. 北京:北京交通大学交通运输学院, 2019.
Xu Pu. Research on modeling and algorithms for capacity optimization of multi-modal passenger transportation network in urban agglomeration[D]. Beijing: School of Traffic and Transportation, Beijing Jiaotong University, 2019.
10 景云, 孙佳政, 张桢桦. 基于广义费用函数的城际铁路分时定价策略研究[J]. 铁道学报, 2020, 42(5): 29-36.
Jing Yun, Sun Jia-zheng, Zhang Zhen-hua. Research on time differential pricing strategy of intercity railway based on generalized cost function[J]. Journal of the China Railway Society, 2020, 42(5): 29-36.
11 汪勤政, 四兵锋. 换乘约束下城市多方式交通分配模型与算法[J]. 交通运输系统工程与信息, 2017, 17(4): 159-165, 181.
Wang Qin-zheng, Si Bing-feng. Urban multi-modal traffic assignment model and algorithm under transfer constrain[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(4): 159-165, 181.
12 李虹慧. 京津冀城市群居民城际出行的交通方式选择行为分析[D]. 北京: 北京交通大学交通运输学院, 2020.
LI Hong-hui. Choice behavior analysis of transportation modes among residents in Jing-Jin-Ji urban agglomeration[D]. Beijing: School of Traffic and Transportation, Beijing Jiaotong University, 2020.
[1] 贾洪飞,丁心茹,杨丽丽. 城市潮汐车道优化设计的双层规划模型[J]. 吉林大学学报(工学版), 2020, 50(2): 535-542.
[2] 姜攀, 杨家其, 房瑞伟. 城市群综合运输通道布局优化双层模型[J]. 吉林大学学报(工学版), 2017, 47(4): 1061-1067.
[3] 杨兆升, 宋淑敏, 杜鹏程, 杨薇. 大型公共场所应急状态下交通诱导疏散模型 [J]. , 2012, (03): 588-593.
[4] 刘杰, 何世伟, 宋瑞, 蒋金亮. 综合运输体系下的货运网络能力计算[J]. 吉林大学学报(工学版), 2012, 42(02): 334-338.
[5] 于滨, 杨忠振, 程春田, 左志 . 公交线路发车频率优化的双层规划模型及其解法[J]. 吉林大学学报(工学版), 2006, 36(05): 664-0668.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!