吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (1): 150-161.doi: 10.13229/j.cnki.jdxbgxb.20230371

• 交通运输工程·土木工程 • 上一篇    

自动驾驶接管过程中驾驶能力恢复状态对交通流振荡特性的影响

王长帅(),徐铖铖(),任卫林,彭畅,佟昊   

  1. 东南大学 交通学院,南京 201196
  • 收稿日期:2023-04-15 出版日期:2025-01-01 发布日期:2025-03-28
  • 通讯作者: 徐铖铖 E-mail:chdwcs@gmail.com;xuchengcheng@seu.edu.cn
  • 作者简介:王长帅(1995-),男,博士研究生.研究方向:交通安全,驾驶模拟. E-mail: chdwcs@gmail.com
  • 基金资助:
    国家自然科学基金项目(52172343);江苏省杰出青年基金项目(BK20211515);江苏省研究生科研与实践创新计划项目(KYCX22_0272)

Impacts of driving ability recovery state on characteristics of traffic oscillation in automated driving takeover process

Chang-shuai WANG(),Cheng-cheng XU(),Wei-lin REN,Chang PENG,Hao TONG   

  1. School of Transportation,Southeast University,Nanjing 211189,China
  • Received:2023-04-15 Online:2025-01-01 Published:2025-03-28
  • Contact: Cheng-cheng XU E-mail:chdwcs@gmail.com;xuchengcheng@seu.edu.cn

摘要:

利用模拟器开展了自动驾驶接管仿真实验,采集了实验过程中的车辆轨迹数据,利用高斯混合模型将接管后的驾驶状态划分为稳定与不稳定,并确定了被试的驾驶能力恢复时间。随后,利用遗传算法标定了驾驶能力恢复阶段与正常手动驾驶阶段的跟驰模型参数,并通过数值仿真技术,研究了不同扰动强度下驾驶能力恢复时长对交通振荡特性的影响规律。结果表明:接管后驾驶人平均需要27.25 s来恢复驾驶能力;驾驶能力恢复阶段的期望加速度与减速度大于正常手动驾驶阶段,而期望速度要小于正常手动驾驶阶段;接管会引起交通振荡,振荡持续时间与驾驶能力恢复时长和扰动强度正相关,而驾驶能力恢复时长对振荡幅度无显著影响;此外,交通振荡在车队传播过程中其振幅和持续时间会被不断放大。

关键词: 交通运输系统工程, 自动驾驶, 驾驶能力恢复状态, 交通振荡, 数值仿真

Abstract:

This study conducted an automated driving takeover test using a driving simulator to collect vehicle trajectory data. Then, participants driving ability recovery time was derived by employing the Gaussian mixture model to classify the driving state as either stable or unstable. Then, the parameters of the intelligent driver car-following model for the driving ability recovery and the norm manual driving state were calibrated using the genetic algorithm. Finally, numerical simulation techniques were employed to explore the impacts of driving ability recovery time on the propagation characteristics of traffic oscillations under various intensities of traffic disturbance. Results indicated that drivers took an average of 27.25 s to recover their driving ability. In the driving ability recovery state, the desired acceleration and deceleration were higher, while the desired speed was lower. Furthermore, the takeover of automated vehicles resulted in traffic oscillation, and the duration was positively linked to the driving ability recovery time and intensity of traffic disturbance. However, the amplitude of traffic oscillation was not significantly affected by the recovery time. Moreover, both the duration and amplitude of oscillation were amplified during its propagation in the simulation fleet.

Key words: transportation system engineering, automated driving, recovery of driving performance, traffic oscillation, numerical simulation

中图分类号: 

  • U471.3

图1

自动驾驶接管过程中驾驶状态的变化"

图2

本文方法流程图"

图3

自动驾驶接管仿真测试平台"

图4

前车速度随时间的变化情况"

表1

实验方案"

序号

自动驾驶

持续时间/s

自动驾驶

速度/(m·s-1

接管前置

时间/s

前车速度 /(m·s-1
118022.22618.06
26023.61615.28
330025.00616.67
430022.22415.28
518023.61416.67
66025.00418.06
76022.22516.67
830023.61518.06
918025.00515.28

表 2

变量的定义及描述"

符号变量的描述及定义
x1每秒内后车的平均纵向速度/(m·s-1
x2每秒内后车纵向速度的标准差
x3每秒内后车的平均纵向加速度/(m·s-2
x4每秒内后车的平均跟驰距离/m
x5每秒内后车跟驰距离的标准差
x6每秒内前后车速度差的均值/(m·s-1
x7每秒内前后车速度差的标准差
x8每秒内前后车的平均车头时距/s
x9接管后的时间(被试接管车辆的时刻为0时刻)
x10每秒内后车的平均横向速度/(m·s-1
x11每秒内后车横向速度的标准差
x12每秒内后车的平均横向加速度/(m·s-2
x13每秒内后车的平均车道偏移量/m
x14每秒内后车车道偏移量的标准差

图5

不同变量组合的数据与参考数据间的推土距离"

图6

不同时间间隔下纵向驾驶状态分类结果"

表3

IDM参数"

参 数含义/单位最大值最小值
A最大加速度/(m·s-2100.1
b期望减速度/(m·s-2100.1
vf期望速度/(m·s-14010
s0静止安全距离/m100.1
T安全车头时距/s101

表4

标定的跟驰模型参数"

参 数驾驶能力恢复阶段正常手动驾驶阶段
A/(m·s-21.010.45
b/(m·s-25.210.67
vf /(m·s-125.5239.98
s0/m9.889.37
T/s1.261.73

图7

不同扰动强度下的车辆时空轨迹"

表5

不同情况下加速波与减速波的波速"

vδ /(m·s-1时间/s减速波/(m·s-1加速波/(m·s-1vδ /(m·s-1时间/s减速波/(m·s-1加速波/(m·s-1
2.782015.532.538.332017.742.40
2.782415.532.588.332417.742.46
2.782815.532.698.332817.742.49
2.783215.532.818.333217.742.47
2.783615.532.968.333617.742.38
2.784015.533.128.334017.742.28
5.562016.770.0711.112018.323.70
5.562416.770.1511.112418.323.77
5.562816.771.7511.112818.323.76
5.563216.772.0011.113218.323.65
5.563616.772.1511.113618.323.51
5.564016.772.2411.114018.323.39

表6

线性回归模型的参数估计结果"

变量名振荡持续时间振荡幅度
参数值标准差P参数值标准差P
调整后的R20.9510.959
扰动强度13.2310.117<0.0013.1670.019<0.001
驾驶能力恢复时间0.8980.053<0.001-0.0150.0090.08
ID2.5480.025<0.0010.0750.004<0.001
常数项-23.7281.941<0.001-6.8640.316<0.001

图8

振荡在车队中的传播特性"

1 Yao Z, Hu R, Wang Y, et al. Stability analysis and the fundamental diagram for mixed connected automated and human-driven vehicles[J]. Physica A: Statistical Mechanics and its Applications, 2019, 533(C): No.121931.
2 秦严严. 智能网联环境下异质交通流特性分析方法研究[D]. 南京: 东南大学交通学院, 2019.
Qin Yan-yan. Study on analytical method of heterogeneous traffic flow characteristics under connected and autonomous environment[D]. Nanjing: School of Transportation, Southeast University, 2019.
3 秦严严, 王昊, 王炜, 等. 混有CACC车辆和ACC车辆的异质交通流基本图模型[J]. 中国公路学报, 2017, 30(10): 127-136.
Qin Yan-yan, Wang Hao, Wang Wei, et al. Fundamental diagram model of heterogeneous traffic flow mixed with cooperative adaptive cruise control vehicles and adaptive cruise control vehicles[J]. China Journal of Highway and Transport, 2017, 30(10): 127-136.
4 Xie D F, Zhao X M, He Z. Heterogeneous traffic mixing regular and connected vehicles: modeling and stabilization[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2060-2071.
5 Mintsis E, Lüecken L, Porfyri K, et al. Transaid deliverable 3.1——modelling, simulation and assessment of vehicle automations and automated vehicles' driver behaviour in mixed traffic[R]. Berlin: German Aerospace Center, 2018.
6 丁子健. 新型混合车流中车辆接管对交通振荡的影响机理及车辆协同控制[D]. 南京: 东南大学交通学院, 2021.
Ding Zi-jian. The impact mechanism of the takeover of autonomous vehicle on traffic oscillation in the mixed traffic flow and the coordinated control of vehicles[D]. Nanjing: School of Transportation, Southeast University, 2021.
7 胡宏宇, 张慧珺, 姚荣涵, 等. L3级自动驾驶接管过程驾驶员情景意识研究 [J]. 吉林大学学报:工学版, 2024,54(2): 410-418.
Hu Hong-yu, Zhang Hui-jun, Yao Rong-han, et al. Driver's situational awareness in takeover process of L3 automated vehicles[J]. Journal of Jilin University (Engineering and Technology Edition), 2024,54(2):410-418.
8 王琳岩, 张慧珺, 胡宏宇. 驾驶经验对L3级自动驾驶接管绩效的影响[J]. 汽车工程, 2022, 44(10): 1521-1526.
Wang Lin-yan, Zhang Hui-jun, Hu Hong-yu. Effect of driving experience on take-over performance of L3 automatic driving[J]. Automotive Engineering, 2022, 44(10): 1521-1526.
9 Lücken L, Mintsis E, Kallirroi N P, et al. From automated to manual-modeling control transitions with SUMO[C]∥SUMO User Conference 2019, Berlin-Adlershof, Germany, 2019 :124-244.
10 李晓赫, 吴建平, 彭德品. L3级自动驾驶对交通流特性的影响分析[C]∥第三十三届中国仿真大会, 北京, 2021:572-578.
11 Liu Q, Liu J, Cai Y, et al. Exploring the impact of the takeover time for conditionally automated driving vehicles on traffic flow in highway merging area[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12):24753-24764.
12 翟俊达, 鲁光泉, 陈发城. 自动驾驶水平对驾驶行为稳定时间的影响分析[J]. 北京航空航天大学学报, 2022, 50(11): 3477-3483.
Zhai Jun-da, Lu Guang-quan, Chen Fa-cheng, et al. Effect analysis of automation levels on stabilization time of driving behaviors[J]. Journal of Beijing University of Aeronautics and Astronautics,2022, 50(11): 3477-3483.
13 Rubner Y, Tomasi C, Guibas L J. The earth mover´s distance as a metric for image retrieval[J]. International Journal of Computer Vision, 2000, 40(2): 99-121.
14 Reynolds D A. Gaussian mixture models[J]. Encyclopedia of Biometrics, 2009, 741: 659-663.
15 Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, 1977, 39(1): 1-22.
16 Milanés V, Shladover S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 285-300.
17 Treiber M, Hennecke A, Helbing D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E, 2000, 62(2): 1805-1824.
18 Zhu T, Wang C, Yang C, et al. Evaluation of effectiveness of speed reduction markings on driving speed in highway tunnel entrance and exit areas[J]. Promet-Traffic Transportation, 2020, 32(1): 141-152.
19 王长帅, 徐铖铖, 邵永成, 等. 基于生存分析的自动驾驶接管时间分析[J]. 中国安全科学学报, 2023, 33(8): 142-148.
Wang Chang-shuai, Xu Cheng-cheng, Shao Yong-cheng, et al. Analysis of takeover time of automated driving based on survival analysis[J]. China Safety Science Journal, 2023, 33(8): 142-148.
20 Hinton G E, Roweis S. Stochastic neighbor embedding [J]. Advances in Neural Information Processing Systems, 2002, 15:857 - 864
21 王雪松, 朱美新. 基于自然驾驶数据的中国驾驶人城市快速路跟驰模型标定与验证[J]. 中国公路学报, 2018, 31(9): 129-137.
Wang Xue-song, Zhu Mei-xin. Calibrating and validating car-following models on urban expressways for Chinese drivers using naturalistic driving data[J]. China Journal of Highway and Transport, 2018, 31(9): 129-138.
22 Zheng Z, Ahn S, Chen D, et al. Applications of wavelet transform for analysis of freeway traffic: bottlenecks, transient traffic, and traffic oscillations[J]. Transportation Research Part B: Methodological, 2011, 45(2): 372-384.
[1] 胡宏宇,张慧珺,姚荣涵,陈国迎,高菲. L3级自动驾驶接管过程驾驶员情景意识研究[J]. 吉林大学学报(工学版), 2024, 54(2): 410-418.
[2] 袁伟,袁小慧,高岩,李坤宸,赵登峰,刘朝辉. 基于自然驾驶数据的电动公交踏板误操作辨识方法[J]. 吉林大学学报(工学版), 2023, 53(12): 3342-3350.
[3] 吴坚,姚琳琳,朱冰,邓伟文. 基于高斯混合模型的驾驶员个人特质辨识[J]. 吉林大学学报(工学版), 2015, 45(1): 38-43.
[4] 高振海, 吴涛, 赵会. 车辆虚拟跟随避撞中驾驶人制动时刻模型[J]. 吉林大学学报(工学版), 2014, 44(5): 1233-1239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!