吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (11): 3379-3391.doi: 10.13229/j.cnki.jdxbgxb.20220745

• 通信与控制工程 • 上一篇    下一篇

三自由度直升机多刚体动力学建模与参数辨识

李世尧1,2(),张特3,朱波4(),彭琛3,胡天江1   

  1. 1.中山大学 航空航天学院,深圳 518107
    2.哈尔滨工业大学 控制与仿真中心,哈尔滨 150001
    3.电子科技大学 航空航天学院,成都 611731
    4.南京大学 高端控制与智能运维研发中心,苏州 215163
  • 收稿日期:2022-06-15 出版日期:2024-11-01 发布日期:2025-04-24
  • 通讯作者: 朱波 E-mail:lishiyao_315@163.com;zhubo5@mail.sysu.edu.cn
  • 作者简介:李世尧(1999-),男,博士研究生.研究方向:多无人系统,高性能伺服控制.E-mail:lishiyao_315@163.com
  • 基金资助:
    国家自然科学基金项目(62373386)

Multi-rigid-body dynamics and parameter identification of a 3-DOF helicopter

Shi-yao LI1,2(),Te ZHANG3,Bo ZHU4(),Chen PENG3,Tian-jiang HU1   

  1. 1.School of Aeronautics and Astronautics,Sun Yat-Sen University,Shenzhen 518107,China
    2.Control and Simulation Center,Harbin Institute of Technology,Harbin 150001,China
    3.School of Aeronautics and Astronautics,University of Electronic Science and Technology of China,Chengdu 611731,China
    4.Center for Advanced Control and Smart Operations,Nanjing University,Suzhou 215163,China
  • Received:2022-06-15 Online:2024-11-01 Published:2025-04-24
  • Contact: Bo ZHU E-mail:lishiyao_315@163.com;zhubo5@mail.sysu.edu.cn

摘要:

针对编码器测角精度有限的三自由度直升机教学与科研平台,从多刚体系统的视角,开展了三刚体动力学建模、多通道耦合动力学参数辨识、电机-螺旋桨升力组件特性辨识、模型线性化处理与分析、模型特性验证等全链条工作,最终获得了可以直接用于基于模型控制设计的标称模型,并从模型描述平台特性的完整性和精确性方面,开展了大量对比实验。基于该标称模型,设计并实验验证了两个“前馈+基于线性二次型调节器的反馈控制”角轨迹跟踪控制器,获得的角轨迹跟踪控制精度水平可作为其他高精度算法的对标对象。

关键词: 多刚体动力学, 参数辨识, 三自由度直升机, 基于模型的控制

Abstract:

The 3-degrees of freedom (DOF) helicopter has three typical features: nonlinearity, underactuation, and suffering from uncertainties and external disturbances. It has received much attention from well-known research groups, owing to its convivence for the verification of motion planning and robust control. However, the lack of accurate models for motion and actuator dynamics leading to the limitation for the motion planning and control algorithms. Motivated by this fact, we study the model of a 3-DOF helicopter platform as a multi-rigid-body system, which is equipped with low-precision encoders for attitude measurements. The detailed work includes: ① modelling the dynamics for three bodies respectively; ② identifying the parameters of the multi-channel motion as well as the parameters of the motor-propeller lifting component; ③ linearizing and analyzing the nonlinear model; ④ verifying both the nonlinear and linearized models. Finally, a benchmark model for the platform is obtained, by which, the model-based controller can be designed. Some experiments are designed to show the completeness and high-accuracy of the benchmark model. Two “feedforward + linear quadratic regulator (LQR)-based feedback” controllers for the angular trajectory tracking are designed based on the identified model and implemented on the experimental setup, where the tracking performance of these controllers can be benchmarked against other advanced algorithms.

Key words: multi-rigid body dynamics, parameter identification, 3-DOF helicopter, model-based control

中图分类号: 

  • V249.122
1 刘久富, 杨忠, 孙德敏, 等. 基于模型的飞行控制软件测试用例的生成[J]. 吉林大学学报: 工学版, 2006, 36(4): 543-547.
Liu Jiu-fu, Yang Zhong, Sun De-min, et al. Generation of testing case for model based flight control software of unmanned aerial vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(4): 543-547.
2 Dai X, Ke C, Quan Q, et al. RFlySim: automatic test platform for UAV autopilot systems with FPGA-based hardware-in-the-loop simulations[J]. Aerospace Science and Technology, 2021, 114: No.106727.
3 Ishutkina M A. Design and implimentation of a supervisory safety controller for a 3DOF helicopter[D]. Cambridge: Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2004.
4 Kiefer T, Graichen K, Kugi A. Trajectory tracking of a 3DOF laboratory helicopter under input and state constraints[J]. IEEE Transactions on Control Systems Technology, 2009, 18(4): 944-952.
5 Zhu B, Liu H H T, Li Z. Robust distributed attitude synchronization of multiple three-DOF experimental helicopters[J]. Control Engineering Practice, 2015, 36: 87-99.
6 Zhu B, Zhang Q, Liu H H T. Design and experimental evaluation of robust motion synchronization control for multivehicle system without velocity measurements[J]. International Journal of Robust and Nonlinear Control, 2018, 28(17): 5437-5463.
7 Liu H, Lu G, Zhong Y. Robust LQR attitude control of a 3-DOF laboratory helicopter for aggressive maneuvers[J]. IEEE Transactions on Industrial Electronics, 2013, 60(10): 4627-4636.
8 Li C, Yang X, Xiao B. Adaptive attitude tracking control of a 3-degrees-of-freedom experimental helicopter with actuator dead-zone[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019, 233(1): 91-99.
9 栗英杰, 赵丁选, 赵颖. 直升机飞行动力学建模及仿真[J]. 吉林大学学报: 工学版, 2011, 41(): 241-245.
Li Ying-jie, Zhao Ding-xuan, Zhao Ying. Flight dynamics model and simulation of helicopters[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(Sup.2): 241-245.
10 Zhu X, Li D. Robust attitude control of a 3-DOF helicopter considering actuator saturation[J]. Mechanical Systems and Signal Processing, 2021, 149: No.107209.
11 固高科技. GHP2002型三自由度直升机实验指导书V2014B[Z].
12 Cui Q, Zhang L, Chen M. Observer based backstepping control for a three degree of freedom model helicopter[C]∥ 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China, 2016: 2299-2304.
13 Raj K, Choudhary S K, Muthukumar V. Linear quadratic regulator for helicopter model with a prescribed degree of stability[C]∥ International Conference on Systems Engineering, Las Vegas, USA, 2020: 379-389.
14 纪明达, 李德伟, 席裕庚. 三自由度直升机的无静差预测控制[J]. 控制工程, 2014, 21(1): 122-125.
Ji Ming-da, Li De-wei, Xi Yu-geng. Offset free model predictive control of 3-DOF helicopter[J]. Control Engineering of China, 2014, 21(1): 122- 125.
15 Li C, Yang X. Neural networks-based command filtering control for a table-mount experimental helicopter[J]. Journal of the Franklin Institute, 2021, 358(1): 321-338.
16 郭帅, 陆耿, 钟宜生. 三自由度直升机模型辨识与控制[J]. 测控技术, 2012, 31(3): 73-76.
Guo Shuai, Lu Geng, Zhong Yi-sheng. Identification and control of 3DOF helicopter[J]. Measurement Control Technology, 2012, 31(3): 73-76.
17 李亚帅, 邵宗凯. 基于PEM的三自由度直升机模型辨识[J]. 传感器与微系统, 2017, 36(6): 49-52.
Li Ya-shuai, Shao Zong-kai. Model identification of 3-DOF helicopter based on PEM[J]. Transducer and Microsystem Technologies, 2017, 36(6): 49-52.
[1] 李伟,宋海生,陆浩宇,史文库,王强,王晓俊. 复合材料板簧迟滞特性线性辨识方法[J]. 吉林大学学报(工学版), 2022, 52(4): 829-836.
[2] 史文库,张曙光,张友坤,陈志勇,江逸飞,林彬斌. 基于改进海鸥算法的磁流变减振器模型辨识[J]. 吉林大学学报(工学版), 2022, 52(4): 764-772.
[3] 王杨,宋占帅,郭孔辉,庄晔. 转动惯量试验台的惯性参数测量[J]. 吉林大学学报(工学版), 2019, 49(6): 1795-1801.
[4] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[5] 张家旭, 李静. 基于混合优化方法的UniTire轮胎模型参数辨识[J]. 吉林大学学报(工学版), 2017, 47(1): 15-20.
[6] 孙伟, 李健, 贾师. 硬涂层复合结构非线性刚度及阻尼辨识[J]. 吉林大学学报(工学版), 2016, 46(4): 1156-1162.
[7] 秦余钢, 马勇, 张亮, 李腾飞. 基于改进最小二乘算法的船舶操纵性参数辨识[J]. 吉林大学学报(工学版), 2016, 46(3): 897-903.
[8] 史文库,毛阳,姜雪,陈志勇,马利红,潘斌. 半主动液压悬置参数识别与动态特性[J]. 吉林大学学报(工学版), 2014, 44(3): 605-611.
[9] 赵飞翔, 张建伟, 郭孔辉, 张立浩, 郑重. 基于重构电压的感应电机等效参数离线辨识[J]. 吉林大学学报(工学版), 2013, 43(06): 1596-1600.
[10] 宗长富, 聂枝根, 王化吉. 商用车简化模型参数辨识方法[J]. 吉林大学学报(工学版), 2013, 43(05): 1171-1177.
[11] 熊瑞, 何洪文, 许永莉, 何银. 电动汽车用动力电池组建模和参数辨识方法[J]. , 2012, 42(04): 809-815.
[12] 张彩萍, 姜久春. 用基于遗传优化的扩展卡尔曼滤波算法辨识电池模型参数 [J]. , 2012, (03): 732-737.
[13] 庄未,刘晓平,孙汉旭. 基于惯性测量单元的欠驱动球形机器人惯性参数辨识[J]. 吉林大学学报(工学版), 2011, 41(4): 1119-1125.
[14] 孙光辉, 王茂, 申立群. 分数阶混沌系统的自适应同步及参数辨识[J]. 吉林大学学报(工学版), 2010, 40(增刊): 354-0359.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!