吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1876-1885.doi: 10.13229/j.cnki.jdxbgxb201706028

• 论文 • 上一篇    下一篇

基于扰动观测器的光电稳定平台摩擦补偿策略

晋超琼1, 2, 3, 张葆1, 2, 李贤涛1, 2, 申帅1, 2, 3, 朱枫1, 2, 3   

  1. 1.中国科学院 长春光学精密机械与物理研究所,长春 130033;
    2.中国科学院 航空光学成像与测量重点实验室,长春 130033;
    3.中国科学院大学,北京 100049
  • 收稿日期:2016-06-27 出版日期:2017-11-20 发布日期:2017-11-20
  • 通讯作者: 张葆(1966-),男,研究员,博士.研究方向:航空光电成像技术.E-mail:zcleresky@vip.sina.com
  • 作者简介:晋超琼(1990-),女,博士研究生.研究方向:航空光电稳定平台视轴稳定.E-mail:jincqhit@126.com
  • 基金资助:
    “863”国家高技术研究发展计划重点项目(2013AA122102)

Friction compensation strategy of photoelectric stabilized platform based on disturbance observer

JIN Chao-qiong1, 2, 3, ZHANG Bao1, 2, LI Xian-tao1, 2, SHEN Shuai1, 2, 3, ZHU Feng1, 2, 3   

  1. 1.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
    2.Key Laboratory of Airborne Optical Imaging and Measurement, Chinese Academy of Sciences, Changchun 130033;
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-06-27 Online:2017-11-20 Published:2017-11-20

摘要: 为了进一步提高航空光电稳定平台的抗干扰能力,提出了一种基于LuGre摩擦模型与扰动观测器(DOB)相结合的扰动补偿控制方案。首先,对某型两轴两框架平台系统速度环进行建模,并进行扰动分析,设计了扰动控制方案。然后,对平台进行摩擦模型参数辨识试验,在摩擦补偿的基础上设计扰动观测器,并通过仿真试验验证了方案的可行性。最后,为了测试该控制方案的可行性和必要性,将航空光电稳定平台安装于模拟转台上进行试验,测试其加入摩擦补偿和扰动观测器后平台的扰动抑制能力。试验结果表明:该控制方案在模拟飞行转台以3 Hz以内任意频率正弦运动的情况下,系统的扰动隔离度至少提高了14.52 dB;且系统在低速运行时,其跟踪性能明显提高,跟踪误差的均方值由原来的0.1959 °/s减小到0.0838 °/s。同时,通过振动试验验证了该控制方案对质量不平衡引起的干扰也有很好的抑制作用,具有较好的鲁棒性和较高的实用价值。

关键词: 自动控制技术, 航空光电稳定平台, 摩擦补偿, 参数辨识, 扰动观测器

Abstract: In order to improve the isolation degree of disturbance of photoelectric stabilized platform, a friction compensations strategy based on Disturbance Observer (DOB) was put forward. First, the model of velocity loop was established by mechanism analysis, then a disturbance control scheme was proposed. Second, the identifications of the friction model parameters were determined by experiments. Based on the friction compensation control strategy, the DOB control strategy was designed. The accuracy of the strategy was verified by experiments. Finally, in order to test the feasibility and necessity of the control scheme, the aerial photoelectric stabilized platform was installed on the simulation platform, and the disturbance rejection capability of the platform was tested after the friction compensation and DOB were used. Experiment results show that, when the frequency of disturbance is within 3 Hz, the system disturbance isolation degree is increased by at least 14.52 dB. When the system is running at low speed, the tracking performance is improved obviously, and the tracking error is reduced from 0.1959 °/s to 0.0838 °/s. This control strategy can attenuate the mass unbalance torque. It has strong robustness and practical value.

Key words: automatic control technology, aerial photoelectrical stabilized platform, friction compensation, parameter identification, disturbance observer(DOB)

中图分类号: 

  • TP273
[1] 丛爽,孙光立,邓科,等. 陀螺稳定平台的自抗扰及其滤波控制[J]. 光学精密工程,2016,24(1):169-177.
Cong Shuang,Sun Guang-li,Deng Ke, et al. Active disturbance rejection and filter control of gyro-stabilized platform[J]. Optics and Precision Engineering,2016,24(1):169-177.
[2] Tian Da-peng, Shen Hong-hai, Dai Ming. Improving the rapidity of nonlinear tracking differentiator via feedforward[J]. IEEE Transactions on Industrial Electronics,2014,61(7):3736-3743.
[3] 李贤涛,张葆,孙敬辉,等. 航空光电稳定平台扰动频率自适应的自抗扰控制[J]. 红外与激光工程,2014,43(5):1574-1581.
Li Xian-tao,Zhang bao,Sun Jing-hui,et al. ADRC based on disturbance frequency adaptive of aerial photoelectrical stabilized platform[J]. Infrared and Laser Engineering, 2014,43(5):1574-1581.
[4] 汪达兴,杜福嘉. 大型天文望远镜摩擦传动系统低速特性的究[J]. 光学精密工程,2006,14(2):274-278.
Wang Da-xing,Du Fu-jia. Ultra-low speed research on friction driver for astronomical telescope[J]. Optics and Precision Engineering,2006,14(2):274-278.
[5] 克晶,苏宝库,曾鸣. 一种直流力矩电机系统的滞滑摩擦补偿方法[J]. 哈尔滨工业大学学报,2005,37(6):736-739.
Ke Jing,Su Bao-ku,Zeng Ming. Nonlinear stick slip friction compensation for DC motors[J]. Journal of Harbin Institute of Technology,2005,37(6):736-739.
[6] 魏伟,戴明,李嘉全,等. 基于重复-自抗扰控制的航空光电稳定平台控制系统设计[J]. 吉林大学学报:工学版,2015,45(6):1924-1932.
Wei Wei, Dai Ming,Li Jia-quan, et al. Design of airborne opto-electric platform control system based on ADRC and repetitive control theory[J]. Journal of Jilin University (Engineering and Technology Edition),2015,45(6):1924-1932.
[7] Harony A, Friedland B, Cohn S. Modeling and measuring friction effects: physics, apparatus, and experiments[J]. IEEE Control Systems Magazine,2008,28(6):82-91.
[8] Masten M K. Inertially stabilized platforms for optical imaging systems: tracking dynamic targets with mobile sensors[J]. IEEE Control Systems Magazine,2008,28(1):47-64.
[9] 向红标,裘祖荣,李醒飞,等. 精密实验平台的非线性摩擦建模与补偿[J]. 光学精密工程,2010,18(5):1119-1127.
Xiang Hong-biao,Qiu Zu-rong,Li Xing-fei,et al. Nonlinear friction modeling and compensation of high-precision experimental platform[J]. Optics and Precision Engineering,2010,18(5):1119-1127.
[10] Armstrong-Hélouvry B,Dupont P,de Wit C C. A survey of models, analysis tools and compensation methods for the control of machines with friction[J]. Automatica,1994,30(7):1083-1138.
[11] Johanastrom K, de Wit C C. Revisiting the LuGre friction model[J]. IEEE Control Systems,2008,28(6):101-114.
[12] 汪永阳,戴明,丁策,等. 光电稳定平台中高阶扰动观测器的应用[J]. 光学精密工程,2015,23(2):459-466.
Wang Yong-yang,Dai Ming,Ding Ce,et al. Application of high order disturbance observer in EO stabilized platform[J]. Optics and Precision Engineering,2015,23(2):459-466.
[13] 李贤涛,张葆,赵春蕾,等. 基于自适应的自抗扰控制技术提高扰动隔离度[J]. 吉林大学学报:工学版,2015,45(1):202-208.
Li Xian-tao,Zhang bao,Zhao Chun-lei, et al. Improve isolation degree based on adaptive active disturbance rejection controller[J]. Journal of Jilin University(Engineering and Technology Edition),2015,45(1):202-208.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[7] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[8] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[9] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[10] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[11] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[12] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[13] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[14] 许金凯, 王煜天, 张世忠. 驱动冗余重型并联机构的动力学性能[J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
[15] 胡云峰, 顾万里, 梁瑜, 杜乐, 于树友, 陈虹. 混合动力汽车启停非线性控制器设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1207-1216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!