吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (3): 866-876.doi: 10.13229/j.cnki.jdxbgxb.20230550

• 车辆工程·机械工程 • 上一篇    下一篇

C80列车长大下坡周期制动踏面疲劳寿命预测

宋剑锋1(),黄鑫磊2,王思然2,谢光耀2,董永刚1()   

  1. 1.常熟理工学院 机械工程学院,江苏 常熟 215500
    2.燕山大学 机械工程学院,河北 秦皇岛 066004
  • 收稿日期:2023-10-11 出版日期:2025-03-01 发布日期:2025-05-20
  • 通讯作者: 董永刚 E-mail:jfsong2003@163.com;d_peter@163.com
  • 作者简介:宋剑锋(1973-),女,副教授,博士.研究方向:重载列车制动损伤机理.E-mail:jfsong2003@163.com
  • 基金资助:
    国家自然科学基金项目(51875501);山西省重点研发计划项目(201703D111005);河北省自然科学基金项目(E2018203442)

Fatigue life prediction of brake treads for C80 trains with long downhill cycles

Jian-feng SONG1(),Xin-lei HUANG2,Si-ran WANG2,Guang-yao XIE2,Yong-gang DONG1()   

  1. 1.School of Mechanical Engineering,Changshu Institute of Technology,Changshu 215500,China
    2.School of Mechanical Engineering,Yanshan University,Qinhuangdao 066004,China
  • Received:2023-10-11 Online:2025-03-01 Published:2025-05-20
  • Contact: Yong-gang DONG E-mail:jfsong2003@163.com;d_peter@163.com

摘要:

为预测C80列车长大下坡周期制动过程的车轮踏面疲劳寿命,在Abaqus软件中建立车轮有限元模型,通过高温拉伸试验确定CL60车轮钢26~500 ℃温度区间内的材料力学参数,同时考虑对流换热、轮轨接触传热、热辐射作用及行车阻力,利用功能转换关系、Hertz接触理论得到列车制动及惰行阶段作用在踏面上的热流载荷、法向载荷和切向载荷。开发子程序控制载荷、传热属性对踏面旋转加载,并对列车长大下坡周期制动过程进行热-机械耦合分析,得到并分析踏面温度、Mises应力-时间历程。分别基于N.E.损伤、R.W.损伤公式开发疲劳寿命程序,得到两种损伤下的踏面疲劳寿命,并分析闸瓦压力对疲劳寿命的影响。结果表明:踏面温度、Mises应力历程在同一循环后达到稳定;轮轨接触中心为踏面危险点,两种损伤下车轮服役转数误差百分比为1.28%;闸瓦压力越大,危险点温度越高,Mises应力越大,疲劳寿命越短。

关键词: 机械设计, 周期制动, 踏面疲劳寿命, 车轮服役转数, N.E.损伤, R.W.损伤

Abstract:

High-temperature tensile tests were used to establish the material mechanics parameters of CL60 wheel steel in the 26~500 ℃ temperature range, considering the convective heat transfer, wheel-rail contact heat transfer, thermal radiation, driving resistance, taking advantage of work-energy conversion relationships with Hertz contact theory to obtain the heat flow load, normal load, and tangential load. A wheel finite element model was developed in Abaqus to predict the fatigue life of wheel treads during the braking process of C80 trains with lengthy downhill cycles. The subroutine is created to manage the load with heat transfer qualities for rotational loading of the tread surface in order to determine the temperature of the tread surface and the Mises stress-time history. It also examines the thermal-mechanical interaction of the braking process for the lengthy downhill cycle of the train. By investigating the effect of gate tile pressure on fatigue life, the fatigue life procedures were developed based on the N.E. damage and R.W. damage formulas to evaluate the fatigue life of the tread surface under two types of damage. The results show that after the same cycle, the tread temperature and Mises stress history stabilize. The tread hazard point is the wheel-rail contact center, with the two different types of damage, the percentage inaccuracy of wheel service revolutions is 1.28%. The higher the pressure of the brake shoe, the higher the temperature of the danger point, the higher the Mises stress, and the shorter the fatigue life.

Key words: mechanical design, periodic braking, fatigue life of tread, wheel service revolutions, N.E. damage, R.W. damage

中图分类号: 

  • U211.5

图1

车轮三维模型"

图2

踏面节点集“Set-1”"

图3

CL60钢高温拉伸试验"

表1

CL60钢力学属性和物理属性"

温度/℃弹性模量/GPa屈服强度/MPa抗拉强度/MPa断面收缩率/%

比热容/

[J·(kg·℃)-1

内部导热率/[W·(m·℃-1)]热膨胀系数/(10-5·℃-1
26225.6605.6812.531.9470511.033
100203.3556.6768.137.2490491.112
200176.1507.8718.142.6530451.207
300152.6465.6662.147.4570421.226
400132.6437.8611.653.4620381.331
50097.3390.3567.859.0680351.392

图4

Abaqus及其子程序二次开发流程图"

图5

载荷及传热属性旋转示意图"

表2

不同温度下的损伤参量数值"

温度/℃σf'/MPaεf'b'c'K'/MPan'
261 246.20.234-0.129-1.0821 481.30.119
1001 222.40.286-0.136-1.1381 419.70.119
2001 185.60.346-0.143-1.1961 345.60.119
3001 128.00.406-0.149-1.2461 256.10.119
4001 081.90.489-0.156-1.3041 178.40.119
5001 039.20.613-0.162-1.4121 099.40.115

图6

弹性模量-温度、损伤参量-温度拟合曲线"

图7

疲劳寿命程序开发流程图"

表3

列车制动工况参数补充表"

初始温度/℃车轮承重量/kg初始制动速度v0/(km·h-1缓解速度/(km·h-1制动减速度ac/(m·s-2
2612 83080400.12

图8

速度-时间、里程-时间关系图"

图9

第5次循环制动阶段结束时刻车轮温度分布云图"

图10

第5次循环温度轴向分布图"

图11

前6次循环踏面温度历程分布"

图12

第5次循环结束时刻车轮Mises应力分布云图"

图13

第5次循环Mises应力轴向分布图"

图14

前6次循环踏面Mises应力历程分布"

图15

危险点应力幅度-应变幅度曲线"

图16

踏面疲劳损伤、车轮服役转数轴向分布"

图17

非轮轨接触处踏面温度轴向分布"

图18

轮轨接触中心Mises应力轴向分布"

表4

不同闸瓦压力下疲劳损伤结果"

闸瓦压力

/kN

制动减速度

/(m·s-2

温度趋于稳定的循环次数损伤模型

最大疲劳

损伤

疲劳循环次数/次车轮服役转数/转

疲劳寿命

Nf /h

60.074N.E.0.3362.9756 3382.49
R.W.0.3323.0157 0052.51
80.125N.E.0.3712.7051 0922.25
R.W.0.3662.7351 7102.27
100.175N.E.0.4012.5047 2802.08
R.W.0.3962.5347 8872.11
120.226N.E.0.4382.2843 2931.90
R.W.0.4332.3143 7361.92
1 王延朋, 丁昊昊, 邹强, 等. 列车车轮踏面滚动接触疲劳研究进展[J]. 表面技术, 2020, 49(5): 121-122.
Wang Yan-peng, Ding Hao-hao, Zhou Qiang, et al. Research progress on rolling contact fatigue of railway wheel treads[J]. Surface Technology, 2020, 49(5): 121-122.
2 黄龙文, 李正美, 安琦. 轮轨滚动接触疲劳寿命的计算方法[J]. 华东理工大学学报: 自然科学版, 2018, 44(6): 918-927.
Huang Long-wen, Li Zheng-mei, An Qi. Calculation method of wheel/rail rolling contact fatigue life[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2018, 44(6): 918-927.
3 黄龙文. 轮轨滚动接触力学分析及疲劳寿命预测方法分析[D].上海: 华东理工大学机械学院, 2018.
Huang Long-wen. Mechanics analysis and fatigue life prediction method for wheel/rail rolling contact[D].Shanghai: School of Mechanical Engineering, East China University of Science and Technology, 2018.
4 范新光. 列车车轮滚动接触疲劳裂纹萌生及扩展研究[D].北京: 北京交通大学机械与电子控制工程学院, 2019.
Fan Xin-guang. Study of fatigue crack initiation and propagation of railroad wheel under rolling contact[D].Beijing: School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, 2019.
5 赵吉中,徐祥,丁立,等. 高速列车车轮踏面滚压强化有限元分析[J]. 西南交通大学学报, 2020, 55(6): 1338-1345.
Zhao Ji-zhong, Xu Xiang, Ding Li, et al. Finite element analysis of rolling strengthening process for wheel tread of high-speed trains[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1338-1345.
6 刘颍宾. 列车车轮踏面滚动接触疲劳损伤机制研究[D]. 合肥: 中国科学技术大学化学与材料科学学院, 2020.
Liu Ying-bin. Research on rolling contact fatigue damage mechanism of train wheel tread[D]. Hefei: School of Chemistry and Materials Science, University of Science and Technology of China, 2020.
7 杨柳青,胡明,赵德明,等. CRH5动车组车轮低温概率疲劳寿命研究[J]. 中国机械工程, 2018, 29(9): 1115-1118.
Yang Liu-qing, Hu Ming, Zhao De-ming, et al. Research on probabilistic fatigue life of CRH5 EMU wheels at low temperature[J]. China Mechanical Engineering, 2018, 29(9): 1115-1118.
8 扬大巍. CRH5型动车组轮轨滚动接触行为及疲劳寿命研究[D].兰州: 兰州理工大学材料科学与工程学院, 2017.
Yang Da-wei. Study on rolling contact behavior and fatigue life of CRH5 type EMU[D].Lanzhou: School of Materials Science and Engineering, Lanzhou University of Technology, 2017.
9 Chong T, Liu X L, Wu S, et al. Study on damage tolerance and remain fatigue life of shattered rim of railway wheels[J]. Engineering Fatigue Analysis, 2021, 12(2): 20-28.
10 Nejad R M, Berto F. Fatigue fracture and fatigue life assessment of railway wheel using non-linear model for fatigue crack growth[J]. International Journal of Fatigue, 2021, 30(3): 13-15.
11 Lima E A, Martins T S, Santos A A. Effect of manufacturing residual stress on the fatigue life of railway wheels for heavy-haul transportation[J]. Procedia Structural Integrity, 2019, 33(8): 246-253.
12 孔昌昌, 秦凤明, 张晓峰, 等. 含Mo元素CL60钢CCT曲线的测定及分析[J]. 材料热处理学报, 2019, 40(8): 139-141.
Kong Chang-chang, Qin Feng-ming, Zhang Xiao-feng, et al. Determination and analysis of CCT curve of CL60 steel containing Mo element[J]. Journal of Materials Heat Treatment, 2019, 40(8): 139-141.
13 马红萍. 重载列车长大下坡制动过程优化控制研究[D]. 南昌: 华东交通大学电气与自动化工程学院, 2019.
Ma Hong-ping. Research on optimal braking process control of heavy-haul train on long steep down grade[D]. Nanchang: School of Electrical and Automation Engineering, East China Jiaotong University, 2019.
14 卢立丽. 货车车轮踏面制动热损伤研究[D]. 北京: 北京交通大学机械与电子控制工程学院, 2007.
Lu Li-li. Research on tread brake heat injury of freight wheel[D]. Beijing: School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, 2007.
15 王铎, 孙毅, 程靳. 理论力学[M]. 北京: 高等教育出版社, 2016.
16 雷国军. 重载列车车轮表面对流传热特性的数值研究[D]. 兰州: 兰州交通大学车辆工程学院, 2020.
Lei Guo-jun. Numerical study on convective heat transfer characteristics on the wheel surface of heavy-duty train[D]. Lanzhou: School of Vehicle Engineering, Lanzhou Jiaotong University, 2020.
17 包辰铭. 重载列车踏面制动车轮温度场分析及制动故障诊断研究[D].北京: 北京交通大学机械与电子控制工程学院, 2020.
Bao Chen-ming. Temperature field analysis of brake wheels on heavy-duty train treads research on brake fault diagnosis[D]. Beijing: School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, 2020.
18 Chen S, Zhao G T, Wang H Y, et al. Study of wheel wear influenced by tread temperature rising during tread braking[J]. Wear, 2019, 32(3): 1-10.
19 李辉平, 贺连芳, 赵国群,等. 硼钢B1500HS界面传热系数与压力关系的研究[J]. 机械工程学报, 2013, 49(16): 78-82.
Li Hui-ping, He Lian-fang, Zhao Guo-qun, et al. Research on the surface heat transfer coefficient depending on surface pressure of boron steel B1500HS[J]. Journal of Mechanical Engineering, 2013, 49(16): 78-82.
20 孙晓冉,宋月,谷秀锐,等. 汽车用SPHC热轧薄钢板的低周疲劳特性[J]. 机械工程材料, 2021, 45(4): 58-60.
Sun Xiao-ran, Song Yue, Gu Xiu-rui, et al. Low cycle fatigue characteristics of SPHC hot-rolled steel sheet for automobile[J]. Materials for Mechanical Engineering, 2021, 45(4): 58-60.
21 张然治. 疲劳试验测试分析理论与实践[M]. 北京: 国防工业出版社, 2011.
22 秦大同. 现代机械设计手册[M]. 北京: 化学工业出版社, 2011.
23 黄协思. 疲劳约束下航空发动机涡轮盘结构优化设计[D]. 成都: 电子科技大学机械与电气工程学院, 2020.
Huang Xie-si. Structural optimization design of aero engine turbine disc under fatigue constraint[D]. Chengdu: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, 2020.
24 卢碧红, 徐超, 郭宏远. C80型铁路货车制动装置运用性能预测[J]. 交通运输工程学报, 2021, 21(6): 289-297.
Lu Bi-hong, Xu Chao, Guo Hong-yuan. Operation performance prediction of C80 railway freight car braking device[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 289-297.
[1] 王淑坤,冯育泽,张景然,张心明,郑龙. 仿清道夫下唇结构除污性能分析[J]. 吉林大学学报(工学版), 2025, 55(1): 392-400.
[2] 黄贤振,于瑞,刘慧珍,唐继武. 考虑轴承非线性恢复力的主轴振动可靠性分析[J]. 吉林大学学报(工学版), 2025, 55(1): 116-124.
[3] 王琛,雒特,惠倩倩,王忠昊,王方方. 面向分体式飞行汽车对接锁定的机电系统设计与验证[J]. 吉林大学学报(工学版), 2024, 54(8): 2130-2140.
[4] 刘洋. 橡胶鞋底弹性打磨仿真及试验[J]. 吉林大学学报(工学版), 2024, 54(8): 2167-2173.
[5] 王磊,李东侠,周松,回丽,沈振鑫. 2024-O铝合金搅拌摩擦焊接头疲劳裂纹扩展行为及寿命预测[J]. 吉林大学学报(工学版), 2024, 54(6): 1563-1569.
[6] 刘洋,江涛. 计及安装角的六自由度平台虎克铰干涉计算模型[J]. 吉林大学学报(工学版), 2024, 54(6): 1519-1527.
[7] 谭晓丹,王勇澎,Hall Robert,徐天爽,黄庆学. 面向电铲自主装卸的矿用自卸车斗型优化[J]. 吉林大学学报(工学版), 2024, 54(5): 1227-1236.
[8] 王世俊,罗冠炜. 含多种碰撞约束振动系统的周期运动转迁特性[J]. 吉林大学学报(工学版), 2024, 54(4): 902-916.
[9] 孙伟,杨俊. 等角贴敷压电分流片圆柱壳有限元建模及减振分析[J]. 吉林大学学报(工学版), 2024, 54(2): 365-374.
[10] 胡斌,蔡一全,罗昕,毛自斌,李俊伟,郭孟宇,王剑. 基于种群胁迫的有限齿侧空间高速充种理论与试验[J]. 吉林大学学报(工学版), 2024, 54(2): 574-588.
[11] 余建星,韦明秀,余杨,崔宇朋,潘宇. 加筋板结构可靠性拓扑优化与工程化设计[J]. 吉林大学学报(工学版), 2024, 54(10): 2781-2791.
[12] 程亚兵,杨泽宇,李岩,安立持,徐泽辉,曹鹏宇,陈璐翔. 基于混合动力汽车正时齿形链系统的振动噪声特性[J]. 吉林大学学报(工学版), 2023, 53(9): 2465-2473.
[13] 王佳怡,刘昕晖,王展,陈晋市,韩亚方,王禹琪. 基于AMESim的恒流量控制阀流量特性分析[J]. 吉林大学学报(工学版), 2023, 53(9): 2499-2507.
[14] 黄贤振,孙楷铂,栾晓刚,胡兵. 螺栓预紧连接可靠性灵敏度分析[J]. 吉林大学学报(工学版), 2023, 53(8): 2219-2226.
[15] 杨艳,侍玉青,张晓蓉,罗冠炜. 一类多刚性限幅振动系统的动态稳定性分析[J]. 吉林大学学报(工学版), 2023, 53(2): 364-375.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!