吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (5): 1722-1727.doi: 10.13229/j.cnki.jdxbgxb.20240294

• 计算机科学与技术 • 上一篇    下一篇

基于权重优化AF的非线性主动噪声控制算法

赵男男1(),金凤2,丁宏钰3   

  1. 1.广东海洋大学 计算机科学与工程学院,广东 阳江 529500
    2.国防科技大学试验训练基地,西安 710106
    3.广东海洋大学 机械与能源工程学院,广东 阳江 529500
  • 收稿日期:2024-03-22 出版日期:2025-05-01 发布日期:2025-07-18
  • 作者简介:赵男男(1982-),女,副教授,硕士.研究方向:计算机应用.E-mail:znn@gdou.edu.cn
  • 基金资助:
    国家自然科学基金项目(52375048)

Nonlinear active noise control algorithm based on weighted optimization AF

Nan-nan ZHAO1(),Feng JIN2,Hong-yu DING3   

  1. 1.School of Computer Science and Engineering,Guangdong Ocean University,Yangjiang 529500,China
    2.Test Training Base National University of Defense Technology,Xi'an 710106,China
    3.School of Mechanical and Energy Engineering,Guangdong Ocean University,Yangjiang 529500,China
  • Received:2024-03-22 Online:2025-05-01 Published:2025-07-18

摘要:

非线性噪声普遍具有不确定性高、频谱特性难以精确描述、稳态误差较大以及瞬态性能差等特点,如何对非线性噪声进行有效控制是一个具有挑战性的任务,为此本文提出基于权重优化AF的非线性主动噪声控制算法。该算法采用基准信号的正余弦分量进行直接频率分析,分析一次噪声和窄带频率范围,得到准确的噪声估计结果,提高了噪声控制的精度和效果。通过对非线性主动噪声估计结果进行训练,调整自适应滤波器的权重,实现对期望输出信号的重构,从而有效抑制了非线性噪声的影响,提高了控制效果。实验结果表明:该算法下信号噪声的均方误差较低、稳态误差小,能够适应各种复杂的噪声环境,有效改善了噪声控制的质量,具有较高的实用性和可靠性。

关键词: 权重优化, 自适应滤波器, 窄带噪声, 噪声估计, 非线性主动噪声

Abstract:

Nonlinear noise generally has high uncertainty, difficult to accurately describe spectral characteristics, large steady-state errors, and poor transient performance. Effective control of nonlinear noise is a challenging task. Therefore, a nonlinear active noise control algorithm based on weight optimization AF is proposed. This algorithm uses the sine and cosine components of the reference signal for direct frequency analysis, analyzes the primary noise and narrowband frequency range, obtains accurate noise estimation results, and improves the accuracy and effectiveness of noise control. By training the results of nonlinear active noise estimation and adjusting the weights of the adaptive filter, the reconstruction of the expected output signal is achieved, effectively suppressing the influence of nonlinear noise and improving the control effect. The experimental results show that under this algorithm, the mean square error of signal noise is low and the steady-state error is small, which can adapt to various complex noise environments and effectively improve the quality of noise control, it has high practicality and reliability.

Key words: weight optimization, adaptive filter, narrowband noise, noise estimation, nonlinear active noise

中图分类号: 

  • TP273

图1

自适应滤波器结构图"

图2

本文算法控制前后谐波信号噪声的均方误差曲线"

图3

本文算法控制下谐波信号的R1变化曲线"

图4

本文算法控制下谐波信号的R2变化曲线"

图5

本文算法控制前后低通信号噪声的均方误差曲线"

图6

本文算法控制下低通信号的R1变化曲线"

图7

本文算法控制下低通信号的R2变化曲线"

[1] Lasota A, Meller M.Iterative learning approach to active noise control of highly autocorrelated signals with applications to machinery noise[J]. IET Signal Processing, 2020, 14(8): 560-568.
[2] 肖玮, 刘思蔚, 唐宇龙, 等. 基于对称非线性函数的变步长LMS自适应滤波算法[J]. 火力与指挥控制,2023, 48(2): 66-72.
Xiao Wei, Liu Si-wei, Tang Yu-long, et al. Variable step size LMS adaptive filtering algorithm based on the symmetric nonlinear function[J]. Fire Control & Command Control, 2023, 48(2): 66-72.
[3] Dongwook K, Vignesh S, Hyunkee K, et al. Development of active noise control simulation with virtual controller based on computational aeroacoustics[J].The Journal of the Acoustical Society of America, 2023, 153(5):2789-2802.
[4] 夏婷, 谢维信, 陈富健, 等. 基于核相关滤波器的高置信度自适应融合目标跟踪算法研究[J]. 信号处理,2021, 37(4): 669-679.
Xia Ting, Xie Wei-xin, Chen Fu-jian, et al. Research on high-confidence adaptive fusion target tracking algorithm based on kernel correlation filter[J]. Journal of Signal Processing, 2021, 37(4): 669-679.
[5] 吕收, 李居伟, 郭昕钰. 基于FXLMS算法的直升机旋翼主动噪声控制的研究[J]. 电子技术应用, 2023,49(5): 99-104.
Shou Lyu, Li Ju-wei, Guo Xin-yu. Research on active noise control of helicopter rotor based on FXLMS algorithm [J]. Application of Electronic Technique, 2023,49(5): 99-104.
[6] 卢炽华, 吴方博, 刘志恩, 等. 液压挖掘机驾驶舱窄带主动噪声控制研究[J]. 西安交通大学学报, 2022,56(11): 167-175.
Lu Chi-hua, Wu Fang-bo, Liu Zhi-en, et al. Research on narrowband active noise control in the hydraulic excavator cabin [J]. Journal of Xi'an Jiaotong University, 2022, 56(11): 167-175.
[7] Lu L, Yang X, Zhu G, et al. Conjugate gradient-based FLANN algorithms in nonlinear active noise control[J]. Journal of the Franklin Institute, 2022, 359(9): 4468-4488.
[8] 王智豪, 徐中明, 夏子恒, 等. 路面冲击输入下车内噪声主动控制[J]. 汽车工程, 2023, 45(1): 119-127.
Wang Zhi-hao, Xu Zhong-ming, Xia Zi-heng, et al. Active control of road noise in vehicles running on impulsive road[J]. Automotive Engineering, 2023, 45(1): 119-127.
[9] Muhammad, Lim C W, Yaw Z,et al. Periodic and aperiodic 3-D composite metastructures with ultrawide bandgap for vibration and noise control[J]. Composite Structures, 2022, 287(5): 1153241.
[10] 尹智帅, 何嘉雄, 聂琳真, 等. 基于优化算法的自动驾驶车辆纵向自适应控制[J]. 系统仿真学报, 2021,33(2): 409-420.
Yin Zhi-shuai, He Jia-xiong, Nie Lin-zhen, et al. Longitudinal adaptive control of autonomous vehicles base on optimization algorithm [J]. Journal of System Simulation, 2021,33(2): 409-420.
[11] 火元莲, 丁瑞博, 齐永锋, 等. 基于混合熵的分数阶归一化子带自适应滤波算法[J]. 北京邮电大学学报,2023, 46(5): 28-34.
Huo Yuan-lian, Ding Rui-bo, Qi Yong-feng, et al. Fractional normalized subband adaptive filtering algorithm based on mixture correntropy [J]. Journal of Beijing University of Posts and Telecommunications, 2023, 46(5): 28-34.
[12] Drant J, Micheau P, Berry A. Active noise control of higher modes in a duct using near field compensation and a ring of harmonic acoustic pneumatic sources[J]. Applied Acoustics, 2022, 188(1): 108583.
[13] 阙鸿杰, 全力, 张丽, 等. 基于自适应滤波器在线解耦的磁场增强型永磁电机无位置传感器控制[J]. 电工技术学报, 2022, 37(2): 344-354.
Que Hong-jie, Quan Li, Zhang Li, et al. Sensorless control of flux-intensifying permanent magnet synchronous motor based on adaptive notch filter online decoupling[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 344-354.
[14] 李帅永, 谢现乐, 毛文平, 等. 基于变分贝叶斯双尺度自适应时变噪声容积卡尔曼滤波的同步定位与建图算法[J]. 电子与信息学报, 2023, 45(3): 1006-1014.
Li Shuai-yong, Xie Xian-le, Mao Wen-ping, et al. Simultaneous localization and mapping based on variational Bayses double-scale adaptive time-varying noise cubature Kalman filter[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1006-1014.
[15] 李涛, 贺钰瑶, 王宁, 等. 基于前馈信号参考的可变收敛列车噪声主动控制算法[J]. 机车电传动, 2022(1): 25-30.
Li Tao, He Yu-yao, Wang Ning, et al. Variable convergence train noise active control algorithm based on feedforward reference [J]. Electric Drive for Locomotives, 2022(1): 25-30.
[1] 李静,石求军,洪良,刘鹏. 基于车辆状态估计的商用车ESC神经网络滑模控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1545-1555.
[2] 邹领, 贺前华, 邝细超, 李洪滔, 蔡梓文. 基于设备噪声估计的录音设备源识别[J]. 吉林大学学报(工学版), 2017, 47(1): 274-280.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李玉峰,,张 雷 ,郝志航 . 一种消除重建图像边缘振荡的图像压缩方法[J]. 吉林大学学报(工学版), 2005, 35(03): 306 -309 .
[2] 周平,郭威,申国哲,胡平. 薄板成形模拟中切边回弹算法[J]. 吉林大学学报(工学版), 2010, 40(04): 931 -0936 .
[3] 马萍,王松艳,秦莉,杨明. 小脑模型神经网络控制器在天线跟踪指向控制中的应用[J]. 吉林大学学报(工学版), 2010, 40(04): 1091 -1095 .
[4] 徐涛, 赵世佳, 张炜, 谭丽辉, 吕岗, 李恒. N重亏损系统摄动的原点移位组合近似方法[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 147 -150 .
[5] 廖军洪, 邵春福, 邬洪波, 孙轶轩, 王书灵. 公路三维动态视距计算方法及评价技术[J]. 吉林大学学报(工学版), 2013, 43(03): 640 -645 .
[6] 柳俊哲, 袁伟静, 贺智敏, 巴明芳, 陈剑斌. 碳化对混凝土碱骨料反应的影响[J]. 吉林大学学报(工学版), 2015, 45(3): 783 -787 .
[7] 闫亚宾, 王晓媛, 万强. 纳米尺度界面低周疲劳破坏行为[J]. 吉林大学学报(工学版), 2017, 47(4): 1201 -1206 .
[8] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380 -1386 .
[9] 李嘉菲,刘大有,于万钧 . 一种能发现重复任务的过程挖掘算法[J]. 吉林大学学报(工学版), 2007, 37(01): 106 -110 .
[10] 吕宜生,欧彦,汤淑明,朱凤华,赵红霞. 基于人工交通系统的路网交通运行状况评估的计算实验[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 87 -0090 .