Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (12): 3326-3334.doi: 10.13229/j.cnki.jdxbgxb.20220061

Previous Articles    

Solution of nonlinear equilibrium state of vehicle steering and its stability determination

Jie LI(),Chang-wang JIA,Qi ZHAO   

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2022-05-28 Online:2023-12-01 Published:2024-01-12

Abstract:

Aiming at the problem of vehicle steering nonlinear equilibrium state and its stability determination, a new method for solving the equilibrium state of vehicle steering nonlinear two degree of freedom model and its stability criterion was proposed. Firstly, the nonlinear two degree of freedom model of vehicle steering was established, and the simplified magic formula tire model was used to describe the nonlinear tire lateral force. Then, the particle swarm optimization algorithm for solving the nonlinear equilibrium state of the corresponding model was established, and the stability criterion of the equilibrium state was deduced through theoretical analysis. Finally, three driving conditions with different front wheel steer angle, road adhesion coefficient and vehicle speed were designed, and the particle swarm optimization algorithm and the quasi Newton method were used to solve the steering nonlinear equilibrium state under the three driving conditions and to judge the stability of three kinds of driving conditions respectively. The results show that the proposed method can accurately solve the equilibrium state of the vehicle steering nonlinear two degree of freedom model, the solution effect is better than the quasi Newton method, and the stability criterion is suitable for determining the stability of the equilibrium state.

Key words: vehicle engineering, nonlinearity, steering stability, equilibrium state, two degree of freedom vehicle steering model, particle swarm optimization (PSO)

CLC Number: 

  • U461.6

Fig.1

PSO flow for solving steering equilibrium state"

Table 1

Vehicle parameters"

参 数数值
车辆总质量m/kg1022
横摆转动惯量Iz/(kg·m21471.7
质心到前轴距离a/m1.197
质心到后轴距离b/m1.123
前轴轮胎参数Cf1.162
前轴轮胎参数Bf0.2
后轴轮胎参数Cr1.313
后轴轮胎参数Br0.25

Table 2

PSO parameters"

参数数值
维数n2
粒子数目N50
最大迭代数M200
精度ε10-4
学习因子c11.5
学习因子c22.5
惯性权重w0.5
侧偏角位置范围[βmin,βmax][-1,1]
横摆角速度位置范围[γmin,γmax][-2,2]
侧偏角速度范围[-vβm,vβm][-0.2,0.2]
横摆角速度范围[-vγm,vγm][-0.5,0.5]

Table 3

Steering equilibrium states at u=70 km/h andμ=0.8 solved by PSO"

平衡 状态前轮转角δ/rad

质心侧偏角

β/rad

横摆角速度

γ/(rad·s-1

适应值/10-4
10-0.25410.39750.5443
0.02-0.24250.39840.6840
0.04-0.23150.39930.9469
0.06-0.22130.39990.9681
0.08-0.21180.40060.8373
0.10-0.20300.40120.4632
0.12-0.19490.40170.0342
0.14-0.18750.40220.2721
0.16-0.18070.40250.6581
0.18-0.17450.40280.3866
0.20-0.16900.40300.9367
20000.4808
0.02-0.00890.11350.6065
0.04-0.01970.21670.6575
0.06-0.03390.29740.4478
0.08-0.05100.34850.6475
0.1-0.06840.37530.2146
0.12-0.08420.38870.2247
0.14-0.09810.39550.0242
0.16-0.11010.39910.8736
0.18-0.12080.40100.9344
0.20-0.13040.40230.6673
300.2540-0.39760.5801
0.020.2664-0.39660.5494
0.040.2793-0.39560.4685
0.060.2929-0.39480.8474
0.080.3070-0.39380.8171
0.10.3217-0.39270.9006
0.120.3368-0.39170.7133
0.140.3523-0.39060.4010
0.160.3682-0.38970.3474
0.180.3845-0.38880.3639
0.200.4011-0.38780.7732

Fig.2

Change of steering balance states with steering angle at u=70 km/h and μ=0.8"

Fig.3

Change of steering balance states with road adhesion coefficient at u=30 km/h and δ=0.1 rad"

Fig.4

Change of steering balance states with vehicle speed at μ=0.8 and δ=0.1 rad"

1 One E, Hosoe S, Tuan H D, et al. Bifurcation in vehicle dynamics and robust front wheel steering control[J]. IEEE Trans Control Systems Technology, 1998, 6(3): 412-420.
2 Azadi S, Naghibian M, Kazemi R. Adaptive integrated control design for vehicle dynamics using phase-plane analysis[J]. Journal of Mechanical Science and Technology, 2015, 29(6): 2477-2485.
3 刘飞, 熊璐, 邓律华, 等. 基于相平面法的车辆行驶稳定性判定方法[J]. 华南理工大学学报: 自然科学版, 2014, 42(11): 63-70.
Liu Fei, Xiong Lu, Deng Lv-hua, et al. Vehicle stability criterion based on phase plane method[J]. Journal of South China University of Technology(Natural Science Edition), 2014, 42(11): 63-70.
4 熊璐, 曲彤, 冯源, 等. 极限工况下车辆行驶的稳定性判据[J]. 机械工程学报, 2015, 51(10): 103-111.
Xiong Lu, Qu Tong, Feng Yuan, et al. Stability criterion for the vehicle under critical driving situation[J]. Journal of Mechanical Engineering, 2015, 51(10): 103-111.
5 Wei L, Lu X, Bo L, et al. Vehicle stability criterion research based on phase plane method[C]∥SAE Paper, 2017-01-1560.
6 张玮, 张树培, 罗崇恩, 等. 智能汽车紧急工况避撞轨迹规划[J]. 吉林大学学报:工学版, 2022, 52(7): 1515-1523.
Zhang Wei, Zhang Shu-pei, Luo Chong-en, et al. Collision avoidance trajectory planning for intelligent vehicles in emergency conditions[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(7): 1515-1523.
7 Chung T, Yi K. Design and evaluation of side slip angle-based vehicle stability control scheme on a virtual test track[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2): 224-234.
8 Bobiertiu C G, Beal C E, Keglman J C, et al. Vehicle control synthesis using phase portraits of planar dynamics[J]. Vehicle System Dynamics, 2019, 57(9): 1318-1337.
9 金立生, 谢宪毅, 高琳琳, 等. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报: 工学版, 2018, 48(5): 1349-1359.
Jin Li-sheng, Xie Xian-yi, Gao Lin-lin, et al. Distributed electric vehicle stability control based on quadratic programming[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(5): 1349-1359.
10 Shen S W, Wang J, Shi P, et al. Nonlinear dynamics and stability analysis of vehicle plane motions[J]. Vehicle System Dynamics, 2007, 45(1): 15-35.
11 杨秀建, 王增才. 高维汽车侧向动力学系统的分岔与失稳分析[J]. 农业机械学报, 2008, 39(12): 45-50, 77.
Yang Xiu-jian, Wang Zeng-cai. Analysis on bifurcation and destabilization of high-dimensional vehicle lateral dynamics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(12): 45-50, 77.
12 杨秀建, 王增才, 朱淑亮, 等. 汽车稳态转向失稳的最近分岔点实时追踪[J]. 农业机械学报, 2009, 40(1): 20-25.
Yang Xiu-jian, Wang Zeng-cai, Zhu Shu-liang, et al. Real-time tracking of the closest bifurcation for vehicle steady-state cornering stability[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(1): 20-25.
13 Horiuchi S, Okada K, Nohtomi S. Analysis of accelerating and braking stability using constrained bifurcation and continuation methods[J]. Vehicle System Dynamics, 2008, 46(Sup.1): 585-597.
14 Della R F, Gobbi M, Mastinu G, et al. Bifurcation analysis of a car and driver model[J]. Vehicle System Dynamics, 2014, 52(1): 142-156.
15 Della R F, Mastinu G. Analysis of the lateral dynamics of a vehicle and driver model running straight ahead[J]. Nonlinear Dynamics, 2018, 92(1): 97-106.
16 刘丽. 车辆三自由度平面运动稳定性的非线性分析及控制策略评价[D]. 长春:吉林大学交通学院, 2010.
Liu Li. Nonlinear analysis and control strategy evaluation on the stability of vehicle 3-DOF planar motion[D]. Changchun: College of Transportation, Jilin University, 2010.
17 王宪彬, 施树明, 刘丽, 等. 基于遗传算法和拟牛顿法的车辆动力学平衡点混合求解方法[J]. 机械工程学报, 2014, 50(4): 120-127.
Wang Xian-bin, Shi Shu-ming, Liu Li, et al. Vehicle dynamics equilibriums solution search based on hybridization of genetic algorithm and quasi-newton method[J]. Journal of Mechanical Engineering, 2014, 50(4): 120-127.
18 王积伟,陆一心,吴振顺,等. 现代控制理论与工程[M]. 北京: 高等教育出版社, 2010.
19 余志生. 汽车理论[M]. 北京: 机械工业出版社, 2009.
20 Bakker E, Nyborg L, Pacejka H B. Tyre modeling for use in vehicle dynamics studies[C]∥SAE Paper, 870421.
21 Pacejka H B. Tyre and Vehicle Dynamic[M]. Oxford: Butterworth-Heinemann, 2002.
22 李杰, 高雄, 王维, 等. 基于UniTire模型的平顺性和操纵稳定性协同研究[J]. 汽车工程, 2018, 40(2): 127-132.
Li Jie, Gao Xiong, Wang Wei, et al. A collaborative study on ride comfort and handling stability based on UniTire model [J]. Automotive Engineering, 2018, 40(2): 127-132.
23 潘峰, 李位星, 高琪. 粒子群优化算法与多目标优化[M]. 北京: 北京理工大学出版社, 2013.
24 徐开, 陈志刚, 赵靖华, 等. 基于粒子群算法的星敏感器布局设计[J]. 吉林大学学报: 工学版, 2019, 49(3): 972-978.
Xu Kai, Chen Zhi-gang, Zhao Jing-hua, et al. Layout design method of star sensor based on particle swarm optimization algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 972-978.
25 马昌凤. 最优化方法及其Matlab程序设计[M]. 北京: 科学出版社, 2010.
[1] Zhao-wei CHEN,Qian-hua PU. Suppression characteristics of vehicle⁃bridge coupling vibration of long⁃span cable⁃stayed bridge with resilient wheels [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2519-2532.
[2] Ping-yi LIU,Xiao-ting LI,Ruo-lin GAO,Hai-tao LI,Wen-jun WEI,Ya WANG. Design and experiment of tilt-driving mechanism for the vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2185-2192.
[3] Xue-jin HUANG,Jin-xing ZHONG,Jing-yu LU,Ji ZHAO,Wei XIAO,Xin-mei YUAN. Electric vehicle charging load forecasting method based on user portrait [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2193-2200.
[4] Shu-pei ZHANG,Ming-yue XIA,Wei ZHANG,Zhao CHEN,Yi-xiang CHEN. Impact dynamic modeling and simulation for ball joint with clearance considering nonlinear stiffness [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2227-2235.
[5] Hui CHEN,Ya-jun SHAO. Measurement method of pavement surface spectrum with multi⁃sensor coupling based on inertial benchmark [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2254-2262.
[6] Lei CHEN,Yang WANG,Zhi-sheng DONG,Ya-qi SONG. A vehicle agility control strategy based on steering intent [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1257-1263.
[7] Xin CHEN,Guan-chen ZHANG,Kang-ming ZHAO,Jia-ning WANG,Li-fei YANG,De-rong SITU. Influence of lap welds on the lightweight design of welded aluminum structures [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1282-1288.
[8] Yong ZHANG,Feng-zhao MAO,Shui-chang LIU,Qing-yu WANG,Shen-gong PAN,Guang-sheng ZENG. Optimization on distortion grid of vehicle external flow field based on Laplacian Algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1289-1296.
[9] Shao-hua WANG,Kun CHU,De-hua SHI,Chun-fang YIN,Chun LI. Robust compound coordinated control of HEV based on finite⁃time extended state observation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1272-1281.
[10] Yan-li YIN,Xue-jiang HUANG,Xiao-liang PAN,Li-tuan WANG,Sen ZHAN,Xin-xin ZHANG. Hierarchical control of hybrid electric vehicle platooning based on PID and Q⁃Learning algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1481-1489.
[11] Gui-shen YU,Xin CHEN,Zi-tao WU,Yi-xiong CHEN,Guan-chen ZHANG. Analysis of microstructure and mechanical properties of probeless friction stir spot welding joint in AA6061⁃T6 aluminum thin plate [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1338-1344.
[12] Yan-tao TIAN,Xing HUANG,Hui-qiu LU,Kai-ge WANG,Fu-qiang XU. Multi⁃mode behavior trajectory prediction of surrounding vehicle based on attention and depth interaction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1474-1480.
[13] Hong-bo YANG,Wen-ku SHI,Zhi-yong CHEN,Nian-cheng GUO,Yan-yan ZHAO. Multi⁃objective optimization of macro parameters of helical gear based on NSGA⁃Ⅱ [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1007-1018.
[14] Rui ZHAO,Yun LI,Hong-yu HU,Zhen-hai GAO. Vehicle collision warning method at intersection based on V2I communication [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1019-1029.
[15] Xiao-bo CHEN,Ling CHEN. Variational Bayesian cooperative target tracking with unknown localization noise statistics [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1030-1039.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!